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A.1 LISS panel and cleaning

In this paper, we make use of data from the LISS panel (Longitudinal Internet studies for the
Social Sciences) managed by the non-profit research institute Centerdata (Tilburg University, the
Netherlands). The LISS panel is a representative online survey of Dutch households. Established
in 2007, the panel comprises approximately 5,000 households and reflects the demographics of
the Dutch population. Members of the panel participate in surveys on diverse topics, including
health, employment, education, and social values. For this study, we utilise two components of
the dataset: the Background Variables (BV) module and the Time Use and Consumption (TUC)
module. We can use the 2009, 2010, 2012, 2015, 2017, 2019, 2020 and 2021 waves for our analysis.
For more detailed information about the LISS panel, see Scherpenzeel and Das (2010).

Background Variables The BV module provides longitudinal data on demographics and so-
cioeconomic characteristics such as age, gender, education, and household income. We focus on
household heads aged 20 to 64, representing individuals with active labour market participation.
Observations are excluded if gross household income is below half the annual minimum wage or
above €500,000, or if year-on-year income changes exceed a 500% increase or fall below an 80% de-
crease. Observations with fewer than nine months of data in a given year are excluded to ensure
data completeness. Income values are deflated to 2015 Euros using the Dutch Consumer Price
Index (CPI) to account for inflation.

Time Use and Consumption We use the Time Use and Consumption (TUC) module of the LISS
panel to analyse household time use and expenditures, including energy-related spending. To
construct total household expenditure, we sum several expenditure categories such as mortgage
or rent payments, utility bills, transportation, insurance, childcare, and food. In years where vari-
ables differ by household composition (e.g., singles vs. families), we adjust the calculations to
ensure consistency and comparability across households. For energy expenditures, we focus on
gas and electricity costs, which we extract from the utility-related variables in the dataset.

We identify and exclude outliers using distributional thresholds for total household expendi-

ture and energy expenditure. Specifically, we remove observations with expenditures that signifi-



cantly exceed realistic bounds or exhibit implausible year-on-year changes. We also drop observa-
tions with missing or inconsistent household identifiers to maintain the longitudinal integrity of
the data. Additionally, we construct household size and composition variables, such as the num-
ber of adults and children, to normalise expenditures and enable meaningful comparisons across
households. After cleaning the TUC module, we merge it with the Background Variables (BV)
module using unique household identifiers.

A.2 Estimation of €: further details

Using the cleaned and merged TUC and BV dataset, we normalise expenditures and income
for household composition using a modified OECD equivalence scale

scale =1+ 0.5 x (adults — 1) + 0.3 x children, (A.2.1)

where adults is household size minus children younger than 14. This scale adjusts household
expenditures and income to account for differing household structures.
The key variables used in the estimation are as follows:

o Total expenditure (x): Total household expenditure, adjusted for the equivalence scale.

e Expenditure share on energy (n?): The proportion of total household expenditure allocated to

energy-related expenses, such as gas and electricity costs.

* Income in non-energy prices: The logarithm of household income adjusted for equivalence

scale and non-energy prices, log(income after taxes and transfers/ (scale - pron-energy))-

The IV estimates displayed in Table A.2.1 are consistent across different fixed-effect specifi-
cations.We rejected the null of homothetic preferences (¢ = 0) at the 1% significance level in all
cases. Our preferred estimate, € = 0.557, comes from specification (3), which includes both time
and individual fixed effects. Notice we use this value in the main analysis.

Above we instrument total expenditure with total household income. This instrumentation
addresses potential measurement errors and the endogeneity of expenditure data. For comparison
purposes, we provide below also the estimation results without using instrumental variables, i.e.
using log(Expenditure) on the RHS. The results for estimations with different fixed effects are
presented in Table A.2.2. All specifications suggest again that there is a significant degree of non-
homotheticity between non-energy and energy goods. The coefficients are quite close to the IV
coefficients, especially when we control for the ID and time fixed effects. This suggests that, for
our most stringent estimation specification, the magnitude of the bias is relatively small.



Table A.2.1:

IV estimation results of €

@ 2) ®)
Log Expenditure (IV) -0.575%** -0.583*** -0.557***
(0.034) (0.037) (0.124)
Observations 18608 18608 16242
R-squared 0.190 0.186 0.189
Fixed Effects None Time ID + Time
Clustering ID + Time ID + Time ID + Time
Note. Standard errors in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.
Table A.2.2: Least squares estimation results for €
@) (2) ©)
Log Expenditure -0.509%*** -0.504*** -0.566***
(0.018) (0.018) (0.018)
Observations 18794 18794 16410
R-squared 0.187 0.198 0.685
Fixed Effects None Time ID + Time
Clustering ID + Time ID + Time ID + Time

Note. Standard errors in parentheses. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

A.3 Estimation of the income process

Using the cleaned and processed BV dataset, we estimate the income process by regressing the
logarithm of gross household income on the constructed variables. The model takes the form:

log(yit) =a + a; + 71 age;, + 72 ageft + 73 age?;l—
t educ;; + p occupation;, + 0 gender;, + 0 size; + uj;. (A.3.1)

Using the residuals (u;;) obtained from the income regression described above, we estimate a
persistent-transitory income process. This model decomposes observed income into two compo-
nents: a persistent AR(1) process and a transitory shock.! The specification is as follows:

Uit = Kip + Py (A.3.2)
Kit = PKit—1 + €t (A.3.3)

where «;; is the persistent component and ;; is the transitory shock. The persistent component

! This specification implicitly assumes the absence of measurement errors. We also explored an alternative specifi-
cation that explicitly accounts for measurement errors. In this case, the variance of the measurement error cannot be
separately identified from the variance of the transitory shock, and therefore must be fixed during the estimation. We
set it to 0.02, following estimates from French (2004) and Heathcote et al. (2010) based on U.S. data. Under this as-
sumption, the estimated variance of the transitory shock is effectively zero, suggesting the absence of transitory income
shocks. This alternative specification of the income process yields only minor quantitative differences compared to our
baseline scenario.



evolves according to an AR(1) process with persistence p and innovation &;.

We estimate the parameters p, 02 (variance of persistent shocks), and 0'1% (variance of transitory
shocks) using Minimum Distance Estimator (MDE).

The estimation uses moments derived from the theoretical properties of the model. Variances
and covariances of income across time periods form the basis of the moment conditions:

2

(%
i) = = Rl o3, (A.3.4)

2
E[uitui,t—s] = Psl(_repz, fors > 0. (A.3.5)

The MDE procedure minimises the distance between the model-implied moments and their
empirical counterparts using an identity weighting matrix. Variances capture the contributions
of persistent and transitory components, while covariances identify the degree of persistence in
income dynamics.

The results of the estimation are as follows:

o = 0.9500 (+0.0280), (A.3.6)
o2 = 0.0160 (+0.0099), (A.3.7)
oy = 0.0157 (£0.0103), (A.3.8)

where values in parentheses represent bootstrapped standard errors. These estimates are in line
with findings from prior studies such as Floden and Lindé (2001) and Krueger ef al. (2016) for US
data. The estimated persistence parameter (p) indicates that income shocks are highly persistent,

with the AR(1) process accounting for most of the observed income variation over time.

A.4 Welfare computation

In order to calculate expenditure equivalent welfare we compare value functions in the initial
steady state with the value when the policy was announced, following many papers such as Ascari
and Ropele (2012) and Bakis ef al. (2015). Below is a step by step description of our approach.
To evaluate welfare, we calculate an expenditure equivalent measure (A) for each state of the
household:

t=0 t=0

EY (qﬁm) U((1+M)x, ) = o Y (1‘%5(;‘)) U p5), (A41)
j= pl

where B(j) is the discount factor between j — 1 and j, with f(0) = 1. This measure represents
the percentage change in expenditure required in the initial steady state to make a household
indifferent between remaining in the initial steady state and transitioning to the new steady state



or policy scenario.
Recall that expectations are taken over idiosyncratic shocks to income and discount factors.

The indirect utility function is:

1 1 %
U(xit, pf) = g (xit) — = (p5)" — o+ oy (A.4.2)
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Defining x = ~ (p)” + 1 — L one can rewrite the left-hand side of Equation (A.4.1) as

Y
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The expectation operator [E} only takes into account uncertainty with respect to the discount
factor.
To compute the steady-state value function V;, we use iterative policy function updates:

Veslai i, Bi) = U(x7, p°, p°) + BiEe [ViS(ai, yi, B)] 4

where x; and a; are the optimal expenditure and asset decisions from the policy functions.

To compute the right-hand side of Equation (A.4.1), we first then compute the sequence of
value functions V; using backward induction, starting from the terminal steady state. At each
step:

Vi (ai, vie, Bir) = U(x;, pf, pf) + BitlBe [Vie1 (@511, Yits1, Bit1)] -

where variables with stars are again the optimal policies along the transition. Since V*(ait, yit, Bit)



summarizes the infinite sequence on the right-hand side of Equation (A.4.1), we can rewrite it as

oear (v ms ({150) ) w5 (1) -
=0 \j=0 t=0 \j=0

and solve for A; to get

(Vl* + ]E(b) Yito (H]t':o ﬁ(j)) K) ‘
A = —1. (A4.3)
Va+ By (e B() ) ®

Finally, we follow Krusell et al. (2009) to rewrite the infinite sum over the discount factors. Define
d=Ejy2, ( §:o ﬁ(])) and let d; be the value of d when (1) = B; with i = {low, high}. The

d
column vector D = | °" | then solves
dhigh

D =T + BIgD

1
where 7 = 1 and B = [,Blow . Solving y1elds D = (I — B].—"B)_ll. such that Equa-

tion (A.4.3) becomes

_ 1
A = (W) 1 (A44)
V;; + dz'K

A.5 Green Transition: Other figures

Figure A.5.1 shows the dynamics of capital and labour along the transition, all relative to the
baseline transition, as in the main text. Figures A.5.2-A.5.4 show the same figures as in the sub-
section 4.2 in the main text but with the variables expressed in deviations from the initial steady
state, to highlight the dynamics of the levels of the variables.



Figure A.5.1: Dynamics of capital and labour across sectors along the transition.
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Figure A.5.2: Dynamics of relative energy prices and energy quantities for the three policies in terms of
deviations from the initial steady state.
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Figure A.5.3: Responses of output, capital, non-energy consumption and energy consumption for the three
policies in terms of deviations from the initial steady state.
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Figure A.5.4: Dynamics of wages and returns to capital for the three policies in terms of deviations from the
initial steady state.
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Figure A.5.5 plots the asset market equilibrium along the transition, resembling the famous
Figure IIb in Aiyagari (1994). The figure in Aiyagari (1994) describes steady state determination,
where agents face a constant, steady state interest rate. In our case, however, we construct the
asset market equilibrium repeatedly along the perfect foresight transition, so we cannot rely on
solving the household problem for different steady state interest rates. This is because along the
transition, agents observe the entire paths of interest rates. Note that the issue above does not hold
for the firm, since these solve a static problem. We then construct the figure as follows:

1. Construct the capital supply schedule of households in the initial steady state.
2. Choose a point in time, t, along the transition.

3. Create the capital demand schedule as a function of different interest rates at time ¢t. In
particular, for a grid of interest rates, solve for the total capital stock demanded by all firms
in the model, using their first-order conditions with respect to capital. All other quantities
and prices are fixed to their equilibrium value at time .

4. Shift the capital supply schedule created in Step 1 to the equilibrium interest rate and capital
stock observed at time t.

The key idea is that, since we can easily construct the capital demand curve from the static
firm problem and we know the equilibrium interest rate and capital stock from the GE transition,
we know where the supply curve has to cross the demand curve at that particular point in time.
By shifting the initial steady state capital supply curve, the implicit assumption we make is that
its shape does not change along the transition.

Figure A.5.5 shows the result of this procedure for t = {1,15,300}. The top left Panel shows the
case when only green technology is growing exogenously. The other three Panels show the results
for our different revenue recycling strategies, when carbon taxes get adjusted as well. To compare
this figure to the transitional dynamics in the main text, recall that the figures in the main text
show deviations from the baseline case in which the green technology is growing exogenously.

Here instead, we show the absolute values.
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Figure A.5.5: The asset market: demand and supply of capital along the transition
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Note. This figure shows the asset market equilibrium for different points along the transition. To construct it, we
first trace out the capital demand function from the static profit maximization problem of the firm. We then shift the
capital supply schedule of households in the initial steady state to the equilibrium interest rate and capital stock that
we observe along the transition at that point in time. The top left Panel shows the transition due to the exogenous
increase in the green technology. The other three Panels show the results for our different revenue recycling strategies,
when carbon taxes get adjusted as well.
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Figure A.5.6 corresponds to Figure 9 in the subsection 4.3 in the main text but with the variables
expressed in deviations from the initial steady state, to highlight the dynamics of the levels of the

variables.

Figure A.5.6: Dynamics of energy consumption, non-energy consumption and disposable income above
and below the median of the wealth distribution for the three policies in terms of deviations from the initial
steady state.
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A.6 Green transition with no policy intervention

Figure A.6.1: Energy Prices and Quantities with no policy intervention
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Figure A.6.2: Output, Capital, and Consumption with no policy intervention
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Figure A.6.3: Factor Prices with no policy intervention
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Figure A.6.4: Gini with no policy intervention
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A.7 Welfare heatmaps for homothetic preferences

Figure A.7.1: Welfare heatmaps for homothetic preferences
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(b) Heat map of EEVs for e=0 with the same limits as Figure 11
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Note. The black areas in the bottom left Panel represent values outside of the specified range. The black area in
the top left represents values larger than -0.7, whereas the black are in the bottom right represents values smaller

than -4.3

In this section, we show the welfare consequences under homothetic preferences, that is, when
we set € = 0. For this purpose, Panel (a) of Figure A.7.1 plots again the heat maps illustrating
the distribution of EEVs across wealth and income percentiles under scenarios T and s,. Since
now expenditure shares are constant along the income and wealth distribution, households face
the same burden from rising relative energy prices. This can be seen from the fact that the vari-
ance of the welfare distribution in the subsidy scenario s, is lower in the homothetic case than
under the non-homothetic case. Vice versa, poorer households, in the homothetic case, spend a
lower fraction of their expenditure on energy, such that the net budget gain from uniform lump-
sum transfers is higher. As a result, the variance of the welfare distribution is higher and some
households even gain in the transfer scenario.

This welfare gain is clearly visible in Panel (b) of Figure A.7.1. In this figure, we apply the
same range over which EEVs are coloured as Figure 11 in the main text. We see that especially the
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top left and the bottom right corner are now black. This implies that the EEVs in the homothetic
case are, respectively, larger and smaller than under the non-homothetic benchmark. In other
words, in the top left, poorer households have a larger welfare gain (a smaller welfare loss) under
€ = 0. Vice versa for rich households in the bottom right. Moreover, the right figure of Panel (b),
depicting the subsidy scenario sg, is now almost one colour, reflecting the identical expenditure
shares between households.

A.8 Learning-by-doing

The baseline version of the model does not consider induced innovation and there is no inter-
action between the carbon tax and the growth rate of the clean technology parameter Z,. In order
to understand to what extent this channel could influence the equity-efficiency trade-off in the
model, we introduce learning-by-doing in the green energy sector in a reduced and simple form.

In particular, for this exercise we specify green technology as

The functional form is taken from Krueger et al. (2016), who model a pure demand externality
between consumption and total output. Under this specification, Z; is a function of a base tech-
nology parameter Z, and green energy production E,. The parameter A > 0 is related to the
learning rate in the economy as will become clear below.

In the spirit of an externality, energy producers do not take this channel into account when
choosing their inputs. When we now solve for the solution to the firm maximization problem,

1 5 1- iy
energy production reads E; = ( Zg K;s Ly vcg> =
Learning rates of technologies In the following, we attempt to relate our simple setup to green

learning rates in the literature.
The cost-minimisation of the green energy Cobb-Douglas production function yields

() ()
+

Denote the cost of one unit of energy by c(r + 6, w, 1), which equals

ng 1—aq N ch —g

Using our formulation for the learning-by-doing technological progress implies

1 1—aq —ug
c(r+d,w,1) == s + %
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Figure A.8.1: Equity-efficiency frontiers and slope of trade-off
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Note. Panel (a) depicts the equity-efficiency frontier for both the case without learning-by-doing (dots) and the one
with a learning rate of 0.153 (triangles) at the final steady state. The numbers are relative to the respective terminal
steady states without any policy intervention at which a share of green energy of 30% is attained. The figure in Panel
(b) depicts the slope of the equity-efficiency trade-off as a function of the learning rate. A lower number implies a larger
increase in inequality for any gain in output.

Importantly, we distinguish the level of energy currently produced, which matters for the level
of the green technology parameter, and the unit of energy which is bought at cost ¢(r + 6, w, 1),

1— _
which is set to unity. Define a = - H( o ) ag + ( i ) ag] (r+0)% (w)!~% |, such that we

Zg 1—ag 1—ag
can write

c(r+d,w,1)= aEgA. (A.8.1)

We interpret this very simplified setup as an instance of the "one-factor learning curve", as de-
scribed in Rubin et al. (2015), where the unity cost of the technology and its cumulative output
form a log-linear relationship. One can then relate A to the learning rate (LR) as LR = 1 — 27

Calibration of A We rely on estimates of learning rates in Rubin et al. (2015) and Arkolakis and
Walsh (2023) to calibrate A. Rubin et al. (2015) document one-factor learning rates of 12%, 23%, and
11% for wind, solar, and biomass power generation, respectively. Averaging these values yields a
learning rate of 15.3%, which corresponds to a A of approximately 0.24.

This value aligns well with the estimates of Arkolakis and Walsh (2023), who regress total cost
on cumulative installed capacity using data from the International Renewable Energy Agency.
Their preferred coefficients imply values of A = 0.2 for wind and A = 0.35 for solar, placing our
benchmark value of A = 0.24 squarely within their empirical range.

The equity-efficiency trade-off under learning-by-doing We illustrate the changes to the equity-
efficiency trade-off in Figure A.8.1. In Panel (a) it depicts the two equity-efficiency frontiers for a
case of no learning-by-doing and one with a learning rate of 0.153. Clearly, the line shifts in, in-
dicated a lower overall cost of the green transition, as expected. However, the slope of the curve
changes only very slightly. To further illustrate the changes of the slope as a function of learning-
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by-doing, Panel (b) depicts the slope as a function of the learning rate. As can be seen, a higher
learning rate flattens the slope, indicating that the inequality cost of mitigating one percentage
point of output loss becomes smaller. From a policy perspective, learning-by-doing would thus
strengthen the case for subsidizing green investment via carbon tax revenues, rather than rebating
them.
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