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Abstract

We show that the cross-sectional distribution of firm growth rates changes

shape over the business cycle: it is right-skewed in booms, left-skewed in reces-

sions, and these swings are more pronounced for larger firms. We call this the

size gradient of skewness. We show that one way of explaining this pattern is

through a parsimonious demand-side framework in which market power maps

symmetric shocks into skewed growth outcomes. Stronger market power implies

more concave responses and thus greater skewness. Countercyclical variance —

or equivalently heterogeneous exposures to aggregate impulses — then generates

the procyclical, size-dependent skewness we observe. Consistent with this mech-

anism, impulse responses to aggregate shocks show that growth and skewness

move in tandem, with the skewness response concentrated among large firms. The

results imply that large firms amplify cyclical asymmetry through market power,

and that outcome-based policies risk responding to distributional patterns that re-

flect propagation rather than the shocks themselves.

Keywords: business cycle, skewness, market power
JEL Codes: D21, E32, L11

*The views expressed in this paper are those of the authors and should not be attributed to De Neder-
landsche Bank. This paper builds on Granular Responses to Aggregate Shocks: An Explanation of Skewness
over the Business Cycle by Niklas Schmitz and supersedes it. We thank Guido Ascari, Igli Bajo, An-
mol Bhandari, Leonard Bocquet, Paul Bouscasse, Vasco Carvalho, Elisa Faraglia, Lukas Freund, Maren
Froemel, Xavier Gabaix, Chryssi Giannitsarou, Fatih Guvenen, Sean Holly, Felix Kübler, Hanbaek Lee,
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1 Introduction

Figure 1: Distributional Shift Location vs. Skewness
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Note: The figure shows unskewed but scaled and mode-shifted distributions on the left, versus skewed
and scaled, but unshifted distributions on the right. We think of the left distributions as canonical input
distributions to economic models and the right ones as output distributions of economic observables.

Firm growth rate distributions change in shape over the business cycle: their tails
thicken or thin out asymmetrically. In contrast, classical assumptions about aggre-
gate fluctuations do not affect the shape. They concern cyclical movement of mean
and, perhaps, variance of input shocks. Figure 1 illustrates this tension over the cycle:
classical input shock distributions in panel (a) versus right- and left-skewed growth
outcomes in panel (b).1 To reconcile this tension, we propose a transmission mecha-
nism which links parsimonious input to output distributions that change shape over
the business cycle. Hence, this paper gives one answer to a central question in macroe-
conomics: How do unobservable shocks to firms translate into observable outcomes of growth?
To make progress on this question, we show empirically that firm size is a key dimen-
sion determining how the skewness of firm growth changes over the cycle. We argue
that heterogeneity by size and, by extension, market power is evidence of a demand-
side mechanism at play. Market power, it turns out, is the ghost in the machine of our
transmission model.

Our paper makes four contributions to answer the original question. First, we doc-
ument three stylized facts using Compustat data (1983–2021): (i) firm growth rates
are negatively skewed in recessions and positively skewed in expansions; (ii) the pro-
cyclicality of skewness is strongly size dependent, with larger firms exhibiting more
pronounced swings from negative to positive skewness over the cycle. We call this
fact the size gradient of skewness. Finally, (iii), cross-sectional variance is a strong pre-

1Right-skewed (left-skewed) means the distribution has a positive (negative) skewness index. In
comparison, a distribution that is ‘more left skewed’ than another has a lower, generally more negative
skewness index.
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dictor of cross-sectional skewness in all size groups. Facts (ii) and (iii) are new to the
literature, with (ii) being particularly surprising given Crouzet and Mehrotra (2020)’s
documentation that large firms have less cyclical outcomes in levels with smaller vari-
ance. The size gradient persists even after controlling for industry composition and
differential exposure to aggregate shocks, consistent with structural differences linked
to market power rather than sectoral reallocation.

Second, motivated by these stylized facts, we develop a theory that maps symmet-
ric cost shocks into skewed growth outcomes through a market power mechanism.2

The key ingredient is market power, parameterized through demand curvature. A
strong version of Marshall’s Second Law of Demand ensures that symmetric shocks
already generate skewness, while a slightly stronger condition — inverse demand has
increasing super-elasticity — implies that skewness rises systematically with market
power. Intuitively, firms with greater market power face more concave first-order
conditions, so output falls more in response to cost increases than it rises in response
to cost declines. This prediction has a transparent empirical counterpart: increasing
pass-through rates. If firms pass on a larger share of cost shocks at higher cost levels,
then the concavity of responses, and hence skewness, increases with market power.
Together, these properties deliver monotone skewness — zero for price takers and in-
creasingly negative as market power rises — providing a parsimonious explanation
for the size gradient of skewness observed in the data.

Third, while our mechanism explains why market power generates skewness and
its size gradient, it does not yet account for the systematic variation of skewness over
the business cycle. Our third contribution is therefore to show that when the variance
of input shocks is countercyclical, as in Figure 1(a), the framework produces procycli-
cal, size-dependent skewness in firm growth rates. We further show that countercycli-
cal variance need not be taken as a primitive. An equivalent interpretation arises from
an aggregate impulse interacting with heterogeneous firm exposures. Large negative
shocks then generate recessions by lowering mean growth and simultaneously raising
the cross-sectional variance of shocks across firms. Conversely, small positive shocks
generate expansions with tighter cross-sectional shock distributions. In this way, the
scaling and shifting of the input distributions can be understood as the result of an
aggregate impulse to which firms are exposed heterogeneously.

Fourth, we use our framework to derive and test empirical predictions. It pre-
dicts that (i) a single adverse aggregate shock lowers the level of growth and induces
negative skewness in the cross-section, and (ii) this skewness response is particularly
strong among firms with greater market power, and hence among large firms. Both

2Closely related work highlights two approaches: one treats skewed shocks as primitive (e.g. Sal-
gado et al., 2025; Kamepalli et al., 2025), the other emphasizes propagation from symmetric shocks, for
instance through hiring–firing asymmetry (Ilut et al., 2018) or network complementarities (Dew-Becker
et al., 2021). We follow the latter, focusing on a demand-side channel.
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claims are borne out in the data. Using impulse-response methods and a range of iden-
tified aggregate shocks, we show that aggregate growth and cross-sectional skewness
move in tandem, with the decline in skewness concentrated on large firms. A comple-
mentary factor decomposition confirms that most of the cyclical variation in skewness
can be traced to an aggregate component with heterogeneous firm exposures. These
results reinforce the interpretation that procyclical skewness does not require exotic
shock distributions, but emerges from the interaction of aggregate impulses with het-
erogeneity in market power.

Our findings have several implications. For aggregate fluctuations, the size gra-
dient suggests that large firms amplify business cycle asymmetry through their mar-
ket power, not despite it.3 For empirical work, our results caution against assuming
shape-preserving shock propagation and highlight the importance of studying dis-
tributional changes beyond mean and variance. For policy, interventions targeting
large firms may have disproportionate effects on the shape, not just the level, of aggre-
gate outcomes. More broadly, policy makers who design insurance or compensation
schemes based on the observed distribution of outcomes should be cautious. Our ev-
idence shows that the cross-sectional skewness reflects the endogenous influence of
market power, rather than directly capturing the underlying primitives that such poli-
cies aim to address.

Since the empirical size gradient is central to our results, it is important to be clear
about how we interpret the relation between firm size and market power. We assume
that larger firms tend to have greater market power. This view is consistent with stan-
dard theories in the literature (e.g. Atkeson and Burstein, 2008; Melitz and Ottaviano,
2008; Edmond et al., 2015; Parenti, 2018; Boar and Midrigan, 2024), as well as empir-
ical evidence linking firm size to market power and markups (e.g. De Loecker and
Warzynski, 2012; Autor et al., 2020). We use this assumption parsimoniously: not to
propose a new theory of market power, but to interpret the size dependence of skew-
ness implied by our mechanism and to organize the empirical facts.

Finally, it is worth clarifying the scope of our analysis and how it relates to our
contribution. Our analysis focuses on annual firm growth rates in the cross-section
and on fluctuations around trend, not on long-run growth. In a similar vein, the cycli-
cal movement of mean growth rates is the very definition of the business cycle and
therefore not our object of study. Instead, we ask how the higher-order properties
of the growth distribution such as variance, skewness, and their dependence on firm
size, systematically evolve over the cycle. In doing so, we complement existing work
that emphasizes structural change, network structures, or skewed idiosyncratic shocks

3The connection between market structure and macroeconomic fluctuations has long been empha-
sized; see, for example, Hall (1986), who discusses how concentration and market power can shape
aggregate dynamics.
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(e.g. Ilut et al., 2018; Dew-Becker, 2023; Salgado et al., 2025), without dismissing their
relevance. In particular, our key contribution is to explain the differential pattern: why
skewness rises systematically with firm size.

So, according to our evidence, the size gradient arises from skewed responses
driven by market power, not from increasingly skewed shocks hitting larger firms.
The gradient we document is pronounced in Compustat, a universe of publicly traded
firms with significant concentration, but may be weaker in datasets with more small
firms or less concentrated markets. In settings with smaller firms, such as those stud-
ied by Bloom et al. (2018), idiosyncratic shocks are likely to play a more important role
in generating skewness. Our evidence is thus complementary, not contrary, to these
studies: idiosyncratically skewed shocks can coexist with the market power mecha-
nism we emphasize.

Literature

Our paper connects to strands of literature studying the cross-section of firms over
the business cycle focusing on the distribution of shocks, propagation mechanisms,
and the distribution of outcomes. We also build on recent work in granular macroeco-
nomics and firm heterogeneity.

Shock distributions One view is that cyclical asymmetries originate in the shocks
themselves. Salgado et al. (2025) document that firm growth distributions are procycli-
cally skewed (left-tailed in recessions and right-tailed in booms) using U.S. and inter-
national micro data, and interpret this through “skewness shocks” that directly shift
higher moments of disturbances. Analyzing firm-level outcomes from over 40 coun-
tries, they document a consistent and robust relationship between aggregate output
growth and the skewness of firm outcomes, such as sales growth, value added, and
employment. Kamepalli et al. (2025) build a framework where skewness can arise ei-
ther from non-Gaussian shocks or from endogenous propagation, nesting both sources
within a production-network environment. These contributions motivate our stylized
fact that cross-sectional skewness of firm growth rates is strongly procyclical, while
our approach shows that symmetric shocks combined with demand-side propagation
suffice to reproduce this fact.4

Propagation mechanisms A second view is that symmetric shocks can be trans-
formed into asymmetric outcomes through endogenous firm responses. Bloom (2009)

4Skewness has been treated not only in work focusing on macroeconomics and firm dynamics. Espe-
cially the household income literature (Guvenen et al., 2014, 2022; Busch et al., 2022) has brought much
early attention to heterogeneity and higher moments of distributions of economic outcomes.
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shows that uncertainty shocks — modeled as increases in second-moment volatil-
ity — induce firms to pause hiring and investment, generating sharp recessions fol-
lowed by rebounds. This supports our finding that variance and skewness co-move
across the business cycle. Similarly, Ilut et al. (2018) demonstrate that U.S. manufac-
turing firms employ concave employment responses to aggregate shocks. They are
“slow to hire, quick to fire,” which produces negative skewness and countercyclical
volatility even when shocks are symmetric. Dew-Becker et al. (2021) develop a nonlin-
ear production-network model where input complementarities generate left-skewed
aggregate fluctuations together with countercyclical dispersion. Bloom et al. (2018)
extend the uncertainty-shock perspective in a DSGE framework with heterogeneous
firms, showing how volatility shocks generate asymmetric business cycle dynamics.
By introducing a demand-side mechanism to induce skewness in firm responses, we
contribute to this strand of the literature.

Outcome distributions A third strand takes the outcome distribution itself as the
primary object of study. Dew-Becker (2024) measures option-implied skewness and
shows that cross-sectional (‘micro’) skewness is procyclical while skewness in the time
series of aggregate outcomes (‘macro skewness’) is largely acyclical, helping distin-
guish mechanisms that operate at the firm versus aggregate level. Crouzet and Mehro-
tra (2020) study the dynamics of large and small firms, showing that large firms are
less cyclical in levels and variances. We extend their insights to higher moments, doc-
umenting that while large firms are dampened in levels, they amplify cyclical move-
ments in skewness. This contrast highlights the novelty of our stylized fact on the size
gradient of skewness.

Granular and network origins Our work also relates to granular and network-based
approaches to business cycles. Carvalho and Grassi (2019) show that firm-level distur-
bances alone can generate aggregate volatility, persistence, and time-varying higher
moments, providing a micro foundation for nontrivial aggregate dynamics. Acemoglu
et al. (2017) develop a theory of macroeconomic tail risks from micro shocks, while
Acemoglu et al. (2012) formalize how network structure shapes aggregate volatility
and amplification. Using French data, Di Giovanni et al. (2014) demonstrate empiri-
cally that firm-specific shocks contribute substantially to aggregate fluctuations, com-
parable to sectoral disturbances. This research aligns with our perspective of decom-
posing an input distribution into heterogeneous firm exposures to a common aggre-
gate impulse, which suffices to generate the observed recession–expansion asymme-
tries in skewness.

Taken together, the literature shows that skewness can arise from skewed shocks,
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Figure 2: Skewness and mean of sales growth in Compustat
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Note: YoY sales growth is computed as log(si,t)− log(si,t) where si,t denotes Compustat item saleq,
deflated by the GDP deflator. Skewness is measured by Kelley Skewness and NBER recessions are
shaded in gray.

nonlinear propagation, or structural heterogeneity. Our contribution is to show how
far one can go with a simple starting point: symmetric shocks, a demand-side propa-
gation channel, and countercyclical variance interacting with heterogeneous firm ex-
posures. This parsimonious framework reproduces the skewed, size-dependent out-
come distributions that characterize firm growth over the business cycle.

Plan for the paper

The rest of the paper is structured as follows. Section 2 describes the key stylized facts
around procyclical skewness. Section 3 describes our simple theoretical framework
linking the size gradient of skewness to market power. Section 4 gives an overview
of the data and further empirical analysis that confirm our theoretical predictions.
Finally, Section 5 concludes the paper.

2 Stylized Facts

In this section we present the three main stylized facts which motivate our theory. All
of these facts relate to the business cycle properties of firm-level skewness and thus
abstract from any long-term, secular phenomena.

Stylized Fact 1: Skewness is procyclical A well-documented empirical regularity
is that the skewness of the firm growth distribution is procyclical: it rises in booms
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and falls in recessions. The pattern reflects an asymmetry in firm dynamics. During
downturns, a small subset of firms suffer large negative growth rates, while positive
growth remains more compressed. As a result, sales growth distributions are nega-
tively skewed in recessions and more symmetric or right-skewed in expansions. This
finding is robust across settings, countries, and measurement approaches, as shown
by Dew-Becker et al. (2021), Ilut et al. (2018), Salgado et al. (2025), and Kamepalli et al.
(2025).

We confirm this fact using quarterly Compustat data on publicly listed U.S. firms.
Figure 2 plots the Kelley skewness of year-over-year sales growth against aggregate
real sales growth.5 Periods of stronger aggregate growth coincide with more positive
skewness, consistent with the procyclical pattern. The result holds across alternative
skewness measures and data samples, as shown in Figure A.5 (cf. appendix).

Stylized Fact 2: Procyclical skewness increases with firm size Having re-established
the procyclical nature of aggregate skewness, we now turn to the core of our empiri-
cal analysis: how this relationship varies across firm size. Panel (a) of Figure 3 plots
the evolution of Kelley skewness over time for large and small firms in the Compu-
stat dataset.6 The figure demonstrates that skewness for large firms is considerably
more procyclical in amplitude than for smaller firms. This heightened procyclicality is
particularly evident during recessions, when large-firm skewness exhibits both deep
declines and sharp recoveries.

Crucially, this result does not hinge on a specific size cutoff. Panel (b) shows the es-
timated sensitivity of Kelley skewness with respect to aggregate growth for increasing
size thresholds for large firms. It is clear that the sensitivity of skewness to aggregate
sales growth increases systematically with firm size. The estimated sensitivity rises
steadily across the distribution, becoming especially pronounced above the 70th per-
centile. This pattern demonstrates that the size–skewness relationship is a pervasive
feature of the data, not an artifact of an arbitrary split. Taken together, these results
show that the procyclical swings in skewness increase with firm size.

Stylized Fact 3: Countercyclical variance amplifies large-firm skewness To better
understand the drivers of skewness, we examine its relationship with the dispersion

5Kelley skewness is defined as KSK[X] = X0.9+X0.1−2X0.5
X0.9−X0.1

, where Xr denotes the r-th quantile.
6Firm size is measured as the rolling average of real sales over the previous three years, with large

firms defined as those above the 90th percentile of this distribution. For ease of writing, we refer to
‘small’ and ‘large’ firms. These terms should be interpreted within the confines of the size distribution
that Compustat allows to study, acknowledging that ‘small’ firms in Compustat are significantly larger
on average than small firms in a representative sample. Additionally, since the smallest firms in Com-
pustat are often startups and may differ from typical small firms across a range of features, we abstain
from directly comparing the largest firms to the smallest firms in the data. Instead, we generally focus
on comparing the top of the size distribution to the rest of the distribution.
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Figure 3: Size-dependent skewness
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Note: Size groups are defined based on average real sales over previous three years. The standard
deviation of Kelley skewness for large firms is about 0.23 — more than twice the corresponding value
of 0.11 for small firms.

of sales growth rates. Specifically, we estimate

∆γg,t = α + β ∆σg,t + ug,t, (1)

where ∆γg,t denotes the change in skewness for group g at time t, and ∆σg,t captures
the change in the standard deviation of sales growth in the same group. Importantly,
the standard deviation of growth rates is not a pure measure of exogenous shock vari-
ance, since it also reflects firms’ endogenous responses. Nevertheless, it provides a
useful summary of how volatile growth outcomes are across firms at a given point in
time. If greater volatility is systematically associated with more negative skewness,
this points to an important role for uncertainty in shaping asymmetries.

The results confirm this intuition. Across the sample, increases in dispersion are
positively correlated with declines in skewness. Crucially, the relationship is much
stronger for large firms: the estimated β is substantially larger than for small firms. In
other words, when volatility rises, skewness becomes disproportionately more nega-
tive among the largest firms.

3 Theory

The stylized facts documented above reveal a systematic relationship between firm
size and the cyclical properties of growth rate skewness. To explain these patterns, we
develop a theoretical framework linking market power to asymmetric firm responses.
Our theory demonstrates two key mechanisms: first, that firms with market power
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Table 1: Regression of Changes in Skewness on Changes in Standard Deviation by
Firm Size

∆Skewnesst = α + β∆Std Devt + εt

All Firms Large Firms Small Firms
(Top 10%) (Bottom 90%)

β (Coefficient) -2.15∗∗∗ -3.23∗∗∗ -1.81∗∗∗

(0.51) (0.64) (0.52)
t-statistic -4.18 -5.02 -3.50

R2 0.171 0.300 0.139
Observations 146 146 146

Note: This table reports results from regressions of year-on-year changes in cross-sectional skewness on
year-on-year changes in cross-sectional standard deviation of real sales growth. Large firms are defined
as those above the 90th percentile of average firm size within each quarter. Standard errors (shown in
parentheses) are computed using the Newey-West HAC estimator with automatic lag selection. Sample
period: 1983–2021. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

exhibit negatively skewed growth rates when facing symmetric cost shocks, while
price-taking firms do not; and second, that countercyclical shock variance amplifies
this skewness for firms with market power, generating procyclical skewness patterns
that increase in magnitude with the degree of market power. The intuition is straight-
forward. When facing cost shocks, firms with market power adjust quantities along
their downward-sloping demand curves. The concavity of their first-order conditions
creates asymmetric responses: positive cost shocks reduce output more than negative
shocks increase it. This asymmetry becomes more pronounced when shock variance
rises (typically in recessions), generating the size-dependent procyclical skewness pat-
terns observed in the data.

3.1 Set-Up and Firm Problem

We model firm production with a convex cost function c(q) = qηeϵ with η > 1, where
q is its production output. The term eϵ is a stochastic cost shifter, where ϵ is drawn
from a symmetric input distribution with zero mean and finite variance, and observed
by the firm at time of production. Because we want to focus on the strategic output ad-
justment of firms, a simple, isoelastic cost function serves as a technological constraint,
while the inverse demand function is kept as general as possible.7

Monopolist Let p(q) be the inverse demand function that the monopolistic firm is
facing. Assumption 1 on p ensures that the firm’s profit-maximizing output is unique

7We note, however, that all our results would apply to a setting in which all firms face marginal cost
constant in q, subject to a capacity constraint for price taking firms. The capacity constraint ensures that
q = ∞ is not a possible outcome.

9



and that the problem is well-behaved.

Assumption 1. The inverse demand function p satisfies: p : R+ → R+ (non-negative
domain and range), p ∈ C3(R+) (differentiability), p′ < 0 (decreasing in quantity) and
∂2

∂q2 ln p ≤ 0 (log-concavity). By convention, R+ = [0, ∞). Furthermore, assume that

marginal revenue, mr(r) ≡ ∂
∂q qp(q) satisfies mr(a) > c for some 0 < a < ∞.

The monopolist’s problem is

max
q≥0

qp(q)− c(q) (2)

The problem features an interior solution q⋆ > 0 if and only if q⋆ satisfies the first
order condition. Lemma 1 characterizes the solution. We define the elasticity operator
E as E f (x) ≡ f ′(x)

f (x) x for any differentiable function, f , that is either strictly positive or
strictly negative.

Lemma 1 (Solution of Firm Problem). The solution q⋆ of the monopolist’s problem is unique,
interior (q⋆ > 0) and implicitly given as the solution to the first order condition

c′(q) = p(q) (1 + E p(q))︸ ︷︷ ︸
≡mr(q) (marginal revenue)

. (3)

Marginal revenue, mr, is defined on some open interval D ⊂ [0, a], on which E p ∈ (0,−1)
holds, too. The markup is given by µ(q) ≡ (1 + E p(q))−1.

The optimality condition in Lemma 1 is a condition in the style of Lerner (1934). De-
note log-quantities with a hat-accent, e.g., ln q = q̂. The optimality condition can be
rewritten in terms of marginal revenue, mr, and as a function of log output, q̂:

ln ◦ mr
(
eq̂)− [ln η + (η − 1)q̂] = ϵ (4)

Using the conditions cited in Assumption 1, it is easy to show that the function ln ◦ mr

and the whole left hand side of eq. (4) are decreasing in q̂.
We now examine our first shape restriction on inverse demand, p. Marshall’s

second law of demand (MSLD) says that the absolute elasticity of demand increases
with price, so |(E p)′| > 0, or, equivalently, that low-cost firms set higher mark-ups.
Marshall’s second law has been subject to much empirical and theoretical scrutiny. It
is prevalent in the trade literature and key insights of seminal papers like Krugman
(1979) rest on it. In more recent theoretical work by Matsuyama and Ushchev (2022),
the second law has been shown to be instrumental for rationalizing incomplete pass-
through and strategic complementarities in pricing, which happen when firms reduce
their mark-ups in response to higher competitive pressures. Melitz (2018) strength-
ens the second law to MSLD’, which we refer to as the Strong Second Law: the ab-
solute elasticity of marginal revenue decreases as output decreases, so |(Emr)′| > 0.
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MSLD is equivalent to the average elasticity of marginal revenues being increasing,
i.e., ∂

∂q

∫ q
0 |Emr(q)| > 0. MSLD’ means that this also holds at the margin, making it

a just slightly stronger concept. For reference, we define MSLD and MSLD’ in the
following two properties:

Property 1 (MSLD). We say that Marshall’s Second Law of Demand holds if for all q ∈ D,
| ∂

∂qE p(q)| > 0. We say it only holds weakly, if the inequality is weak.

Property 2 (MSLD’). We say that Marshall’s Strong Second Law of Demand holds if for all
q ∈ D, it holds that | ∂

∂qEmr(q)| > 0. We say it only holds weakly, if the inequality is weak.

Price Taker A natural benchmark for the monopolist is the behavior of a price-taking
firm.8 A price taker accepts the market price, denoted by p̄, and chooses output qpt,
which satisfies ϵ = ln p̄ − ln η − (η − 1)q̂pt. Hence, q̂pt is a linear function of ϵ. Go-
ing forward, we use pt-subscripts to refer to variables calculated in the price-taker
equilibrium.

Alternative Cost Functions We assume an iso-elastic demand function in order to
focus on the effects of competition on growth rate skewness. While cost functions
may be a driver, too, it is harder to rationalize a dependence on skewness on firm
size using cost functions alone. We discuss avenues to create cross-sectional skewness
driven by the cost structure of firms in more detail in Section B.

3.2 Skewness Measure and Growth Rates

We now formalize how we measure skewness in the distribution of firm output re-
sponses to shocks. Let the steady state output q0 be the output level corresponding to
ϵ = 0. Growth rates relative to the steady state are log-differences of output to steady state
output: q̂ − q̂0. Consequently, the distributions of growth rates and q̂ are the same up
to a constant shift. It is important to note that q̂ − q̂0 is not a time-series growth rate. In
Section 3.3, we exclusively refer to growth rates relative to the steady state. In Section
3.4, we link our theory back to time-series growth rates, which we use to derive our
stylized facts and the empirical part of this paper.

Following Groeneveld and Meeden (1984), we define the skewness of a random
variable X with quantiles Xr, r ∈ (0, 1), as:

skew[X] :=
Xr + X1−r − 2X0.5

X1−r − Xr
∈ (−1, 1). (5)

Setting r = 0.1 defines the classic ‘Kelley skewness’ measure. One can create negative
skew with a symmetrically distributed, zero-mean, random variable by transforming

8Note that a price taking firm does not necessarily operate in a perfectly competitive market.
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it using some concave, increasing function. This negative skewness is exacerbated
when additional concave transformations are applied or when the standard deviation
of the original variable increases. This claim is proven in Lemma 2.

Lemma 2 (Skewness of Transformed RVs). Let Z be a random variable, continuously and
symmetrically distributed about its mean E[Z]. Let X = σXZ with 0 < σX < ∞. Suppose g
is concave and increasing over the support of X. Then:

1. It holds that skew[g(X)] ≤ 0, and strictly if g is strictly concave.

2. If h is another concave, increasing transformation, then skew[h(g(X))] ≤ skew[g(X)],
strictly if h is strictly concave.

3. Skewness decreases for larger σX:

∂

∂σX
skew[g(X)] ≤ 0,

which also holds strictly if g is strictly concave.

Proof. We provide a self-contained proof using a second degree approximation in the
appendix. The results, however, are also corollaries of the notion of ’c−comparability’
of Groeneveld and Meeden (1984). ■

3.3 Skewed Responses to Shocks

The general insights about skewness from concave transformations apply directly to
our model of firm behavior with shocks. We now examine how the endogenous re-
sponse of firm output to cost shocks can generate negatively skewed growth rates in
the cross section. Figure 4 illustrates our strategy. In the lower left panel, it shows
a symmetric shock distribution, which is, by a first order condition in the upper left
panel, mapped to growth rates relative to the steady state. There are two first order
conditions shown: The red f.o.c. maps to panel (a), yielding a slightly left-skewed
distribution of growth rates. The blue f.o.c. maps to panel (b), which displays a distri-
bution that is much more strongly left skewed, as indicated by its quantile lines. The
reason for these differences in distribution is the higher degree of concavity of the blue
f.o.c. relative to the red one. This is a direct illustration of points 1. and 2. of Lemma
2. In this section, we devise conditions on the inverse demand such that (i) first or-
der conditions are concave mappings in the sense of this figure and (ii) the concavity
increases in the degree of market power associated with the demand curve.
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Figure 4: Concave first-order conditions and skewness in log(q/q0)
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3.3.1 Monopolist v. Price Taker

The monopolistic firm adjusts its quantity because a shift in its unit cost implies a
different profit maximizing output. In that sense, it responds endogenously to shocks
to c. We write these endogenous responses in log-quantity, q̂, as a function of the
shock, q̂ = Q⋆(ϵ). Lemma 2 immediately tells us that growth rates are negatively
skewed if Q⋆ is concave. Strict concavity of Q⋆ is determined by properties of the
inverse demand function, p, as stated in Lemma 3. In it, we characterize sufficient
conditions for negatively skewed growth rates in terms of elasticities.

Lemma 3 (Concavity of Real Growth Rates). Consider eq. (4) and let H(q̂) := (ln ◦mr)(eq̂)+

[η − (η − 1)q̂] denote the left hand side of the FOC. Then, Q⋆ = H−1. Then:

Q⋆ is a concave function of ϵ

⇔ Log marginal revenues are log-log concave, i.e. (ln ◦mr)(eq̂) is concave in q̂. If concavity
holds strictly, then Q⋆ is strictly concave.

⇔ The term

Emr(q) = E p +
E p

E p + 1
E2p (6)

is decreasing in q, where E2 = E ◦ E is the elasticity of the elasticity function (‘supere-
lasticity’).
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⇔ MLSD’ holds.

Note that Lemma 3 can be relaxed slightly: conditions do not need to hold globally,
but only on the support of Q⋆(ϵ). While similar local relaxations can be made to all
results in this paper, we omit these additional remarks.

We are now ready to state the first main result of this section, which formalizes a
key comparative prediction. Proposition 1, shows that, under concavity of H, sales
growth rates of a firm with market power are negatively skewed, in contrast to the
symmetric responses of a price taker.

Proposition 1. Let q̂ be log-output of a monopolistic firm, and suppose the conditions of
Lemma 3 hold strictly. Then,

skew[q̂] < skew[q̂pt] = 0.

Proof. This is a direct consequence of Lemmas 2 and 3. ■

3.3.2 Parametrized Market Power

To explore how the degree of market power shapes the skewness of firm responses
more systematically, we next introduce a simple and flexible parameterization of the
inverse demand function that allows us to vary market power continuously. Specif-
ically, write the inverse demand function as p(q) = p∗(q)α p̄1−α for some inverse de-
mand function p∗, some fixed price p̄ and parameter α ∈ (0, 1]. For low values of α,
the firm faces a highly elastic demand and has little influence over the price. For α

close to 1, the firm faces an elasticity that is lower and determined through p∗. The
elasticity of inverse demand is now E p = αE p∗. The firm’s first order condition now
depends on α explicitly:

α ln ◦ p∗(eq̂) + (1 − α) ln p̄ + ln
(
1 + α E p∗(eq̂)

)
+ [ln η − (η − 1)q̂] = ϵ. (7)

We can generalize Proposition 1 under slightly stronger conditions to guarantee
that skewness is monotone in α. Monotonicity of skewness in market power is the key
property which generates the size gradient of skewness described in the stylized facts.
Hence, we define it formally in Property 3.

Property 3 (Monotone Skewness). Let qα be the output produced by a firm with market
power α ∈ [0, 1]. We say Monotone Skewness holds if skewness is monotone in market power.
Specifically, we require skew[qα] < 0 is decreasing in α, with skew[q1] equaling monopolist
and skew[q0] equaling price taker output, respectively. Furthermore, skew[q0] = 0.

Monotone skewness is a global property in the sense that it covers all degrees of
market power. To devise characteristics on p∗ which imply monotone skewness, we
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first establish a condition which allows ranking the skewness of output of a firm of
a single, given degree of market power α against other firms. To this end, index the
markup of this firm by µα(q) = (1 + αE p∗(q))−1. We call the following auxiliary
property monotone markup-to-price elasticities:

Property 4 (Monotone Markup-to-Price Elasticities (MMPEα)). The ratio of markup elas-
ticity to price elasticity is strictly increasing:

∂

∂q
Eµα(q)
E p∗(q)

> 0.

MMPEα states that given some degree of α, markups change more strongly than
the price, if quantities are perturbed. This derivative describes the nonlinearities in
the first order condition of the firm, as one traces out the demand curve. It turns out
that the condition is sufficient to guarantee monotone skewness: Higher degrees of
market power correspond to firms with more negatively skewed growth rates. Before
discussing details, consider CES demand as a sanity check, for which growth rates
are generally unskewed. Under CES, both—the markup and the price—are constant,
hence the derivative evaluates to 0. This is not surprising, since then the first-order
condition of the firm is linear in q̂ and growth rates are symmetrically distributed.
Thus, MMPEα is indeed not satisfied for CES demands.

If and only if MMPEα holds, the inverse markup µα is concave relative to the in-
verse demand function in the log-log space9. Relative concavity can be intuitively
understood as the notion that some function is more concave than another. If f is con-
cave relative to g, then plotting f on the y- and g on the x-axis produces a concave
curve. To denote that the log-inverse mark-up is concave relative to the log-inverse
demand function, we write

1
α

ln
(

1 + αE p∗(·)︸ ︷︷ ︸
1/µα

)
≺ ln (p∗(·)) . (8)

Under this condition, the inverse mark-up becomes the chief contributor of concavity
to the first order condition. Since the concavity of the inverse markup is increasing
in market power, α, a higher market power causes more concave responses to shocks
and thus stronger left-skew. This informal reasoning is correct and carries over to the
following proposition:

Proposition 2. Consider two firms which have the same long-run output, q̂1 = q̂0 = q̂,

9A function f (x) in log-log space is given by the mapping x̂ 7→ ln f (exp(x̂)). When taking logs
of the FOC and rewriting it in terms of q̂, we are operating in the log-log space. If a function, f is an
increasing, concave transformation, h, of another function, g, i.e., if f = h ◦ g, then f is concave relative
to g. We use it extensively in the proofs of the theorems in the appendix. Note that relative concavity is
invariant to linear transformations.
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but different degrees of market power, 1 ≥ α1 > α0 ≥ 0, and otherwise face the same de-
mand curves, p∗, up to differences in p̄10. If MMPEα0 or MMPEα1 holds, then skew(q̂1) <

skew(q̂0) ≤ 0.

Proof (intuition). Fix two levels of market power, α1 > α0 ≥ 0. One can show that
the entire LHS of the first order condition of the high-market power firm is a concave
transformation of the FOC of the lower market power firm. One concludes that the
inverse of the FOC is also more concave for the high market power firm, leading to
stronger left-skew in growth rates. (For details, see appendix.) ■

Proposition 2 states that at whatever degree α of market power MMPEα holds, we
can rank the skewness created by all other degrees of market power against it. It
affirms that growth rates of any other firm that chooses the same output are more left-
skewed if and only if that other firm has more market power. Clearly, if the property
holds for any α, then monotone skewness is implied. This is an unwieldy demand to
make. It turns out, however, that the relation in eq. (8) yields a sufficient condition
on p∗ which guarantees monotone skewness in the sense of Proposition 2 without
reference to α. Note that the LHS of eq. (8) becomes more concave if α increases. Hence,
MMPEα automatically holds for all α, if eq. (8) holds in the limit as α → 0:11

E p∗(·) ≺ ln (p∗(·)) . (9)

This condition is equivalent to the superelasticity of p∗, E2p∗, being increasing. This
feature is defined in Property 5 and shortened to ISID:

Property 5 (ISID). An inverse demand function, p, (locally) satisfies an increasing supere-
lasticity of inverse demand (ISID) if E2p(q) ≡ E(E p)(q) is (locally) strictly increasing in
q.

ISID turns out to be a key property to generate monotone skewness. It not only
implies MMPEα but it also implies MSLD’ for any given α, and thus can be seen as a
further strengthening of Marshall’s second law. Yet, despite its centrality for charac-
terizing the curvature of demand, the superelasticity is an object about which it is hard
to form a prior. Á priori, we have no strong intuition about whether E2p∗ should be
constant, increasing or decreasing in q. To make the concept of ISID less vacuous, we
note that it relates on a deep level to a more interpretable metric: pass-through rates.

The pass through, τ(ϵ), is defined as the share of a cost increase that is passed on to
customers in equilibrium. Formally, τ equals one minus the elasticity of the markup
with respect to the cost shifter c̄ ≡ eϵ, i.e. τ(c̄) = 1 − d log µ

d log c̄ . We formalize the feature
that the pass-through is increasing in Property 6:

10Note that p̄ has to be different for both firms in order to equalize their output and facilitate the local
comparison.

11Here, one notes the convergence of the LHS to the exponential function.
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Property 6 (Increasing Pass-Through (IPT)). An inverse demand function p features in-
creasing pass-through if ∂

∂c̄ τ(c̄) ≥ 0.

The pass through simplifies an empirical treatment of ISID and monotone skew-
ness significantly. Indeed, one only need to assume the standard second law of de-
mand, MSLD, and increasing pass-through rates, IPT, to conclude that ISID holds. In
turn, MSLD and monotone skew all hold. This chain of implications is part of the main
result of this section. Since both MSLD and IPT are properties which are empirically
identifiable and supported by evidence, we have arrived at a set of properties that
are sufficiently strong to provide the sharp theoretical prediction of monotone skew-
ness, while maintaining interpretability. We thus summarize our insight in the main
proposition of this section.

Proposition 3 (Implications of Properties). The following implications hold:

ISID =⇒ (MSLD′ ∧ MMPEα ∀α ∈ [0, 1]) =⇒ Monotone Skewness (10)

IPT ∧ MSLD =⇒ ISID (11)

Equation (10) of Proposition 3 states that under ISID the model predicts a market
power gradient of skewness for growth rates relative to the steady state. Equation (11)
ensures that increasing pass-through rates and a Marshall’s second law suffice. Next,
we connect this gradient to time series growth rates, which are the relevant metric of
our stylized facts and empirical evaluation. A brief discussion of empirical evidence
for ISID is relegated to the end of the theory section.

3.4 Pro-Cyclical Skewness

In the first part of this section, we explain pro-cyclical skewness in time-series growth
rates with counter-cyclical fluctuations in the cross-sectional shock variance. Thereby,
we tacitly assume ISID. Subsequently, we show how firms’ heterogeneous exposures
to the same aggregate shock can drive counter-cyclical fluctuations in variance. This
completes our theory of pro-cyclical skewness: Besides an aggregate shock, no ex-
ogenous variation is required to generate counter-cyclical variances and a channel of
pro-cyclical skewness, which monotonously depends on market power.

To illuminate the intuition behind the first part and illustrate Lemma 2(3), con-
sider Figure 5. The narrow distribution of ϵ in the bottom left panel maps to a narrow
distribution of growth rates in the top right panel. Importantly, by inspection of the
quantile lines of the growth rates, the resulting distribution is left-skewed, but not
extremely so. In contrast, the wide distribution of shocks maps to an extremely left-
skewed distribution of growth rates. If one identifies times of wide distributions as
times of recession and times of narrow shock distributions as expansions, the leap to

17



pro-cyclical skewness is small. Note, however, that the wide and the narrow distri-
bution are both centered. In our theory, we are intentionally silent about the location
of shocks and mean growth rates in general. Because we have a theory of centered
business cycle moments, we neglect shifts in location altogether.

Figure 5: Shock Variance and Skewness in log q/q0
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3.4.1 Countercyclical Variance Drives Procyclical Skewness

It is de facto consensus that expansions are relatively smooth with a low latent cross-
sectional shock variance σ ≡

√
V(ϵ), and that the variance increases to some σ > σ

in recessions. Suppose that σt = σ for even (‘booms’), and σt = σ for odd t (‘busts’) in
our model. For this section, assume that the ISID sufficient condition of Section 3.3 is
satisfied, i.e. E2p∗ is strictly increasing. Then, the countercyclical process immediately
implies procyclical skewness of growth rates relative to the steady state.

Corollary 1. Let (. . . , σt−1, σt, σt+1, . . .) = (. . . , σ, σ, σ . . .) be an alternating sequence of the
cross-sectional standard deviation of ϵt corresponding to booms and busts, respectively. Denote
the skewness of the monopolist’s growth rates relative to the steady state by St = skew[q̂t − q̂0].
Accordingly, denote the skewness of the price taking firm by S

pt
t . Then

(...St−1, St, St+1...) = (..., S, S, S...)
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with St = S < S < 0 if t corresponds to a bust, and

S
pt
t = 0 for all t.

Additionally, the amplitude of the skewness sequence of the monopolist is strictly increasing in
market power, i.e.

∂

∂α
|St| > 0 for all t.

Proof. This is a direct consequence of Lemma 2, combined with Propositions 1 and
2. ■

The conditions of Corollary 1 describe a world visualized in Figure 5, in which in-
creased shock variances amplify left-skewness. Additionally, skewness is exacerbated
by market power in the sense described in the preceding section.

Up to this point, we have derived skewness properties of q̂ − q̂0, which is growth
relative to the steady state. We now turn to time-series growth rates, rt ≡ q̂t − q̂t−1.
Conceptually, the limit case of σ → 0 gives us, without any effort of calculation, the
skewness pattern we see in the data. In this extreme case, output is either hit by a
random shock in a bust, or equals steady state output in a boom.12 Then either the
economy is in a bust and rt = q̂ − q̂0, so skew[rt] = S > 0. Or it is in a boom and rt =

q̂0 − q̂, and thus skew[rt] = S = −S. In effect, skewness alternates between positive
and negative values as the economy passes through boom-bust cycles. The amplitude
of this alternating sequence depends on the considered firms’ market power. This fully
rationalizes the stylized facts.

To conclude this section, we provide Proposition 4, which characterizes the skew-
ness cycle for σ ∈ {σ, σ} with 0 < σ < σ. It ties the theory presented above to the
stylized facts which we elaborate on further in the next section.

Proposition 4 (Procyclical Skewness in ln qt/qt−1, Countercyclical σ and Market Power).
Define (. . . , σt−1, σt, σt+1, . . .) = (. . . , σ, σ, σ . . .) like above. Denote the skewness of the mo-
nopolist’s time series growth rates by Sα

t = skew[q̂t − q̂t−1], where α ∈ (0, 1] parameterizes
market power. Then

(. . . Sα
t−1, Sα

t , Sα
t+1 . . .) = (. . . , Sα, Sα, Sα . . .)

with St = Sα < 0 if t corresponds to a bust and St = Sα > 0 otherwise. Additionally, Sα is
increasing and Sα is decreasing in α, with limit 0 for α = 0.

12Note that the shocks are allowed to have a non-zero mean, since the location of a random variable
is irrelevant to its skewness.
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3.4.2 Heterogeneous Business Cycle Exposure Drives Countercyclical Variance

Up to now, we have taken the existence of i.i.d. symmetric shocks, ϵi,t, as given. How-
ever, why should ϵi,t have a time-varying variance at all? We provide a simple theo-
retical explanation, why V(ϵi,t | recession) > V(ϵi,t | expansion), which immediately
ties the changes in variance to the mean of the shock distribution. To this end, sup-
pose that ul,t is one of l = 1, ..., L aggregate shocks or factors, which are drawn from some
conditional distribution Pl(a | ul,t−k, k ∈ K ⊆ N), say. Let there be a unit measure of
firms, i ∈ [0, 1] and let each firm’s shock be related to the aggregate factor through a

constant marginal effect
∂ϵi,t

∂ul,t
= λ̃i,l. Hence, we can write

ϵi,t = ei,t +
L

∑
l=1

λ̃i,lul,t = ei,t +
L

∑
l=1

N

∑
i=1

λi,lul,t +
L

∑
l=1

ul,tλ̄l = ei,t + λT
i ut + λ̄Tut (12)

where ei,t is an idiosyncratic shock assumed i.i.d., and λ̄l =
∫ 1

0 λi,l di and λi,l = (λ̃i,l −
λ̄l) are the (centered) individual exposures or factor loadings. W.l.o.g. exposures are
normalized to have unit variance, and λ̄l ≥ 013. Exposures are of reduced form for
our purpose but may, for example, be the result of a production network. We must
assume that the histogram of each set of factor loadings, {λi,l}i∈[0,1], is symmetric in
order to generate the symmetric location-scale type input distributions of Figure 1 (a).

Consider now the cross-sectional variance of ϵi,t at a given point in time, and ex-
amine what happens if u2

t,l is large relative to all other factors:

Vt(ϵi,t) = V(ei,t + λT
i ut + λ̄Tut | ut) ∝ u2

t,l. (13)

Hence, large shocks drive up the variance of ϵi,t in the cross section and lead to a left-
skewed distribution of q̂t among the subset of firms with market power. In the special
case of L = 1 drop the subscript, and consider a sequence of aggregate shocks {ut}t.
Suppose the sequence is such that it oscillates between ut ≈ 0 and ut ≫ 0. Recall that
large shocks correspond to recessions because they drive up firms’ cost. Additionally,
they increase cross-sectional variance. Note that any deterministic growth can be sub-
sumed in a positive mean of the process of ei,t, which we do not specify any further.
We then have the following Corollary:

Corollary 2. Assume the shock-exposure structure of this section with L = 1, and let {u2
t }t

be the oscillating (countercyclical) sequence of shocks just described. Consider the cross-section
of growth rates {ri,t}i∈[0,1] over time. Then, the resulting sequence of cross-sectional skewness
measures, {St}t is (procyclically) oscillating, with sgn St = − sgn St−1.

13The latter assumption is also w.l.o.g. and ensures that positive shocks corresponding to an increase
in cost and hence have a recession interpretation.
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3.5 Discussion

3.5.1 Is ISID Exotic?

An (at least locally) increasing superelasticity is no skeleton in the closet of our model.
For example, the family of linear inverse demand functions have an increasing supere-
lasticity, or, as a more complex example, the constant pass-through demand family
(CoPaTh) of demand systems by Matsuyama and Ushchev (2020) satisfies the prop-
erty. In general, since ISID is implied by a weakly increasing pass-through plus MSLD,
it suffices to examine the evidence for IPT14. Recently, Baqaee et al. (2024) have, using
a non-parametric calibration of Matsuyama and Ushchev (2022)’s H.S.A. demand sys-
tem, provided evidence in support of IPT (and, additionally, on MSLD). Other recent
empirical work also comes down in favor of IPT (cf. Berman et al. (2012) and Amiti et
al. (2019)).

Yet, ISID is not a property that has historically received too much attention in em-
prirical work as a demand-side restriction. To make this point, note that the widely
used Kimball (1995) aggregator in the parametrization of Klenow and Willis (2016) has
a globally constant superelasticity. Its special case of CES has a superelasticity of zero.
Analogously, the homothetic translog aggregator by Feenstra (2003), which is popular
in the trade literature, violates IPT (see also Matsuyama and Ushchev (2022)).

CES turns out to be a special case also when it comes to skewness. A CES-style
demand function p∗(q) = Aq−τ for A > 0, τ ∈ (0, 1), implies a constant inverse
demand elasticity. Therefore, the first order condition is linear in q̂ and no degree of
market power induces skewness. Note here that the irrelevance of market power for
skewness is obvious: In this special case, our formalization of market power implies
that p is also a CES inverse demand function. Another insight is that CES inverse
demand is indeed the only inverse demand function for which growth rates are globally
unskewed. This is formalized in Proposition 5. 15

Proposition 5 (the Special Case of CES Demand). The only inverse demand function
which satisfies the regularity conditions (Assumption 1) for which growth rates are globally
unskewed is of CES type, i.e. p∗(q) = Aq−τ with A > 0, τ ∈ (0, 1).

Proof. Note first that any twice continuously differentiable, function f : R ⊃ D → R is
either locally s-convex or s-concave in some point x0, unless it is affine. Therefore, any

14Matsuyama and Ushchev (2022) refer to IPT even as “Marshall’s 3rd Law of Demand”, implying
that IPT is a natural restriction on the demand function.

15We note that it is possible to construct pathological examples of demand functions which have a
decreasing superelasticity of demand. In unreported results, we found a parameter configuration in
a quartic demand function, for which the first order condition turns convex and yields right-skewed
growth relative to the steady state. This feature, however, turned out to be very delicate, and required
much tinkering with parameters, as well as a configuration, in which prices do not drop to 0 as q grows
large.
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inverse demand function which guarantees globally unskewed growth rates must be
such that ln ◦ mr ◦ ex is linear in x, which implies that mr(q) = eA+B ln q = ĀqB. Since
marginal revenue is p(q) + p′(q)q, we are given the ODE: p(q) + qp′(q) = AqB. This
is a linear first-order ODE. Noting that p(q) + qp′(q) = ∂

∂q qp(q), we can integrate both

sides and obtain p(q) = Ā
B+1 qB + C

q for B ̸= −1. Suppose the integrating constant, C, is
zero. Then we must have B ∈ (−1, 0) because B = E p. This is indeed the only possible
case, since otherwise p is not log-concave around 0. (See appendix for details.) ■

3.5.2 Why Growth Rates?

In principle, we could benchmark our theory against log-real sales, q̂t, directly. Why
not calculate the cross sectional distribution of q̂t at any point in time and assess its
skewness? There are three problems. First, the distribution of q̂t is essentially the
size distribution. Trying to keep market power fixed by fixing size bins trivializes
the distribution of q̂t. Second, if one used generously wide size bins instead, the size
distribution itself, which is heavily right-skewed in general, would obscure any con-
tribution to cross-sectional left-skewness in q̂t caused by shocks. Third, any shock
requires a comparison of the ‘shocked’ state to a baseline, and it is natural to make the
baseline either the state of the previous period, or some kind of long-run steady state.
The former describes a time series growth rate, q̂t − q̂t−1, whereas the latter describes
growth relative to the steady state, q̂t − q̂0. While we have used the latter as a theoret-
ical device above, in the presence of idiosyncratic growth trends, measurement of q̂0

becomes elusive.

3.5.3 Other Sources of Skewed Growth Rates

We note that we do not preclude the existence of other sources of skewness in growth
rates. By offering a theory which is able to explain the differential pattern between
skewness of small v. large firms over the business cycle, we allow that other sources
of skewness may well play a role in shaping outcomes. For example, the input distri-
butions of shocks may be systematically skewed (Salgado et al., 2025). Alternatively,
the cost function may be log-convex, which can be an additional contributor to left-
skewness of q̂ − q̂0. We outline two mechanisms for this ‘supply-side skewness’ in
Appendix B: Capacity adjustments and customer acquisitions. Yet, these complica-
tions do not offer a natural reason for why skewness may differ with market power.

3.5.4 Implications for the Real World

Our formal results on procyclical skewness in growth rates are likely to hold with
more generality ‘in the wild’. Suppose, for example, that (i) expansions are smooth
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via a negative trend in ei,t, and (ii) recessions are abrupt positive impulses in ut ↑,
which decay in an AR(1) fashion. Therefore, from an expansion to a recession, one
observes a sudden increase in variance, leading to sudden negative skew in growth
rates. From there, a decay of ut causes the shock variance to decrease steadily, leading
to a sequence of cross-sections that features an initially positive but slowly vanishing
skew.

Yet, Figure 2 suggests that skewness does not decay to zero in times of expansion
but rather stays positive. We advise to be careful when interpreting this fact within
our model. The theory implies a mechanism in which symmetric input distributions
yield skewed outcomes. Fixing the mechanism while changing the input distribution
will generally lead to similar dynamics of the skewness index over the cycle, however,
may affect its level. Besides such concerns about the level, we can think of at least
two intuitive reasons for why the level of skewness may not return to nil after a crisis.
The first is that the decay of the impact of aggregate shocks is asynchronous across
firms. If the impact of the shock lasts longer for some firms, they will recover later.
Therefore, their contribution to a positive skewness index during times of expansion
may materialize substantially later in time. Second, the distribution of growth through
technological innovation (which aggregates into aggregate growth trends) may simply
be right-skewed in the cross-section. In fact, any model in which only some firms in-
novate while others keep their current technology implies a right-skewed distribution
of technological growth.16

4 Empirical Evidence

Having established the theoretical foundations linking market power to skewed firm
responses and procyclical skewness, we now provide empirical evidence testing these
predictions. Our theory generates three testable hypotheses: (1) aggregate shocks
should induce negatively skewed growth rate distributions in the cross-section of
firms, (2) this skewness response should be stronger for larger firms with greater mar-
ket power, and (3) the comovement between aggregate growth and cross-sectional
skewness should be driven primarily by aggregate factors rather than idiosyncratic
shocks. To test these predictions, we use quarterly Compustat data on US public firms
spanning multiple business cycles. The empirical strategy proceeds in three steps:
first, we document the data and measurement approach; second, we estimate im-
pulse responses to identified aggregate shocks to test whether shocks generate the
predicted skewness patterns; and third, we decompose growth rate fluctuations to
assess whether aggregate or idiosyncratic factors drive cross-sectional skewness.

16This idea is, for example, compatible with recent work on innovation bursts by Berlingieri et al.
(2025).
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4.1 Data

Our analysis uses data on US public firms from Compustat. Compustat is the bench-
mark firm-level data set for the United States, providing detailed balance sheet infor-
mation at the quarterly frequency over a long sample period of over 35 years. The
long sample period enables us to cover multiple recessions and draw general conclu-
sions about skewness facts in the US business cycle. Estimating impulse responses to
aggregate shocks at the firm level also requires a sufficiently long time series for each
firm. Let qi,t be firm i’s real sales in quarter t. Real sales our key measure of firm size
and output. Year-on-year real sales growth is gi,t = ln (qi,t/qi,t−4). The business cycle
indicator is aggregate real sales growth, constructed as the size-weighted average of
existing firms’ growth rates:17

gt =
∑i gi,tqi,t−4

∑i qi,t−4
.

This definition of aggregate sales growth only considers firms that exist in both t and
t − 4 and therefore abstracts from entry and exit dynamics, which could affect the
comovement of aggregate growth and micro skewness but are not the focus of this
study.

The main skewness measure is the Kelley skewness, which we obtain from setting
r = 0.1 in eq. (5), and applying it to the empirical CDF of a given set of growth rates,
Gt.18 Kelley skewness compares the distance of the 90% quantile of the time-t distri-
bution of firm growth rates ([Gt]0.9) from the median ([Gt]0.5) to the distance of the
median from the 10% quantile, rescaled by the overall 90-10-spread of the distribu-
tion. If the 90% quantile is further above the median than the 10% quantile is below
the median, the distribution is right-skewed and Kelley skewness is positive. Kelley
skewness allows for an easy decomposition of skewness movements into changes in
upper and lower parts of the distribution and is more robust to outliers than the third
moment.

Details on the sample construction are contained in Appendix C. Besides Compu-
stat, we use data from CRSP for stock prices and Worldscope Fundamentals because
of its good coverage of the date of incorporation. All variable definitions are listed in
the appendix. The data cleaning filters out roughly half of the observations from the
raw Compustat files. Since estimating firm-level impulse responses requires a suffi-

17Note that we treat production and sales as equal, hence we are ignoring inventories.
18Explicitly,

skew (Gt) =

(
[Gt]0.9 − [Gt]0.5

)
−
(
[Gt]0.5 − [Gt]0.1

)
[Gt]0.9 − [Gt]0.1

∈ (−1, 1), (14)

where Gt := {gi,t}i=1,...,nt is the set of firm growth rates at time t.
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ciently long time series for each firm, we focus on firms that have at least 40 consec-
utive observations for sales growth. This reduces the sample size further, see Figure
A.1 in Appendix C. Despite the smaller sample size, the time series of cross-sectional
skewness are very similar before and after data cleaning, see Figure A.2. Appendix D
confirms that cross-sectional skewness is strongly procyclical in Compustat data, for a
variety of skewness measures and data cleaning procedures.

Table 2 compares the full Compustat sample against the cleaned version of firm
growth streaks. For comparison, the table also reports summary statistics from the
Quarterly Financial Reports (QFR), which have been used by Crouzet and Mehrotra
(2020) to construct a representative sample of US firms in certain sectors. For example,
the QFR can be used to construct a sample accurately reflecting the firm size distribu-
tion of US manufacturing firms, including private firms. Relative to this representative
sample of manufacturing firms, the average firm in the Compustat data (which is not
limited to manufacturing firms) is considerably larger, both in terms of assets (USD
3.99bn vs USD 43mln) and sales (USD 399mln vs USD 11mln). The sales growth dis-
tribution in the QFR sample is more dispersed and more symmetric than in the Com-
pustat sample with a mean growth rate closer to zero. Compared to the QFR, leverage
and short-term debt are higher in raw Compustat data but lower in the cleaned data.
The number of observations in the cleaned data is roughly half of the number of ob-
servations per quarter in the QFR. The number of unique firms falls from 22, 397 to
5, 061. Importantly, although the data cleaning affects multiple firm characteristics on
average, the correlation between aggregate sales growth and GDP growth is similar
for both Compustat samples (0.56 vs 0.69). The correlation between skewness and
aggregate sales growth, which is the key object of study in this chapter, is virtually
identical for both samples (0.85 vs 0.84).

In the Compustat sample, all firms are large compared to the universe of US firms.
Therefore, there is little movement at the extensive margin, and any bias in cross-
sectional skewness due to firm exit should be negligible. Hence, we implicitly condi-
tion on firm survival in our results, and abstract from entry/exit dynamics as much as
possible, which are not focus of this work.

Despite the underrepresentation of small firms, sales concentration in the sample
is still high. The largest 10% of firms account for 70% of sales on average, and the top
30% account for over 90% of sales. For comparison, the largest 1% of firms in the QFR
sample of Crouzet and Mehrotra (2020) represent ca. 75% of total sales.
To support our theoretical model with empirical evidence, we derive the following
econometric specification that is guided by our theoretical model. Within our frame-
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Table 2: Summary Statistics for Compustat Data

Full Compustat Cleaned Sample QFR

Assets (mln. USD) 3,941 1,873 43.2
Sales (mln. USD) 396.3 411.7 10.8
Sales Growth (%) 7.2 7.6 0.63
Q(Sales Growth)0.25 (%) -7.8 -7.6 -25.3
Q(Sales Growth)0.75 (%) 20.7 21.2 26.6
Net Leverage (%) 26.9 12.4 20.0
Short-term debt (%) 75.8 8.8 33.0
Obs./quarter 6,338 4,844 6,122
Unique firms 22,097 17,388 –
ρ(Sales Gr., GDP Gr.) 0.64 0.55 –
ρ(Sales Gr., Skew) 0.85 0.88 –

Note: Statistics for QFR are for the manufacturing subset of Crouzet and Mehrotra (2020) from
1977Q3–2014Q1 and directly taken from tables 1 and 3 of their paper; the values are unweighted aver-
ages across size bins. The Compustat statistics are for 1983Q3–2014Q1. The reported values for assets
and sales are in 2009 USD. Values from Crouzet and Mehrotra (2020) are deflated using the price index
for value added in manufacturing. Compustat values are deflated using the GDP deflator since the
data covers multiple industries. The full Compustat sample is the raw Compustat data but removes all
firm-quarter observations with non-positive assets.

work, we can express firm level growth rates as

gi,t = ln
qi,t

qi,t−1
= γ + f (αi, ϵi,t)− f (αi, ϵi,t−1) + wi,t (15)

where γ is an aggregate growth trend19 and αi is firm-specific market power (which
we assume to be monotonic in firm size) and wi,t is a zero-mean i.i.d. disturbance.
We use eq. (12) of the previous section in place of ϵi,t, whereby we assume that ei,t is
fully absorbed by the secular growth trend, γ and wi,t. Relative to the no-disturbance,
steady-state baseline, one can write

gi,t = ln
qi,t

qi,t−1
= γ + f (αi, λT

i ut)− f (αi, 0) + wi,t. (16)

From here, we derive two simple hypotheses: (i) The presence of f (αi, λT
i ut) should

induce negative skewness in the cross-section of growth rates upon impact of a shock.
(ii) The impact on left-skewness, when indexed by α, is increasing in the market power
of the considered cross-section. We examine these two hypotheses in the next section
(Section 4.2) using a simple impulse-response framework and a battery of off-the-shelf
aggregate shocks.

Even though we document a new channel of skewness propagation in the business

19One can motivate the trend from the growth trends brought up in Section 3.4.2, which turn into an
aggregate trend in outcomes if demand systems are homothetic.
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cycle, we are not claiming that this mechanism is exclusive. In fact, skewed idiosyn-
cratic shocks may still play a role for the cross-section of growth rates. To examine this
thought, consider the case where market power plays no role in the transmission. This
implies α = 0 and f is a linear function in the shock, and we can write (up to an affine
transformation)

gi,t = ln
qi,t

qi,t−1
= γ + λ̃T

i ut + wi,t. (17)

One can estimate this equation with a simple decomposition using principal compo-
nent analysis (PCA). This allows analyzing skewness properties of an aggregate factor
ai,t = λ̃T

i ut vis-à-vis those of the idiosyncratic component, wi,t: Maintaining the as-
sumption of symmetrically distributed λi would imply that skewness of growth rates
at a given time t exclusively lives in the idiosyncratic component of this equation, wi,t.
Reintroducing market power would reintroduce skewness into ai,t by skewing the dis-
tribution of exposures. Thus, a central question we can apply this PCA to is about the
importance of our mechanism a priori: whether skewness occurs in the aggregate com-
ponent or in the individual component. A large relative contribution to skewness by
the aggregate factor reinforces the importance of our mechanism, directly linking ag-
gregate shocks in levels to cyclicality properties of higher business cycle moments. It
further adds evidence to a growing literature documenting heterogeneous responses
of firms to aggregate shocks; for monetary policy shocks, for example, see Ottonello
and Winberry (2020) or Cloyne et al. (2023). As the ultimate analysis of this paper, we
discuss the PCA and its results in Section 4.3.

4.2 Aggregate Shocks Cause Growth-Skewness Correlation

With an impulse-response framework, we show that aggregate shocks move level and
skewness of growth rates in lock-step, on the aggregate and for large firms, but much
less so for the small firms of our sample. We estimate impulse responses of skewness
and growth to monetary, oil, credit, uncertainty, sentiment, and TFP shocks. These
shocks are different in nature and timing, constructed using varying identification
schemes and sample periods. We find that all shocks induce a close co-movement
pattern between skewness and growth that is at least as strong as measured in the raw
data. We estimate the impulse responses of skewness and sales growth using local
projections (Jordà, 2005):

yt+h = αh + βhshockt +
L

∑
ℓ=1

γ′
ℓ,tcontrolst−ℓ + et+h (18)

for h = 0, ..., 11 quarters using up to L = 2 lags. The βh coefficients give the impulse
response of interest. The variable y is either cross-sectional skewness or aggregate
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Table 3: Local projection specifications

Shock Reference Controls (lagged) Sample period
Monetary Bu et al. (2021) Real GDP, GDP deflator,

Shadow Rate, EBP 1994Q1 – 2019Q4
Oil Baumeister and Hamilton (2019) Real GDP, GDP deflator, Oil price 1983Q3 – 2019Q4
Credit Gilchrist and Zakrajšek (2012) Real GDP, GDP deflator, EBP 1983Q3 – 2019Q4
Uncertainty Ludvigson et al. (2021) Real GDP, GDP deflator, VXO 1983Q1 – 2015Q4
Sentiment Lagerborg et al. (2023) ICE, real GDP, uncertainty,

Real stock prices 1983Q3 – 2019Q4
TFP Ben Zeev and Khan (2015) Real GDP per capita, real stock prices

per capita, labor productivity 1983Q3 – 2012Q1

Note: All specifications include lags of the dependent variable and the shock series as controls and
are estimated with two lags. ‘ICE’ is the University of Michigan Index of Consumer Expectations.
Uncertainty is measured as the 12-month Jurado et al. (2015) uncertainty index.

sales growth. The shock series and controls are taken off-the-shelf from existing work.
Table 3 summarizes the regression specifications across the different shocks. Appendix
D.2 covers robustness checks and contains details on the variable definitions as well
as data sources. We also describe each shock series in detail in Appendix D.2.

4.2.1 IRF Results

Figure 6 shows the impulse response estimates for the six different shocks. All aggre-
gate shocks are associated with a subsequent decline in cross-sectional skewness (blue
lines; left axis). Following an adverse one standard deviation shock, the skewness in-
dex declines by between 0.02 and 0.06 points. The decline is strongest for the credit
shock and weakest for the monetary shock. The peak effect occurs 4 to 6 quarters
after impact and is statistically significant across all shocks. The effects on skewness
are not long-lived and die out after at most 10 quarters. The response of aggregate
sales growth (black dashed lines; right axis) to the aggregate shocks looks very similar
to the responses of skewness. The correlations of the impulse responses for a given
shock range between 0.89 and 0.98. Aggregate shocks therefore appear capable of 1)
inducing significant movements in skewness and 2) generating strong co-movement
between sales growth and skewness.

These findings confirm the insights of Figure 2. Cross-sectional skewness moves
closely with aggregate growth across many US recessions (including the Covid reces-
sion), suggesting the high correlation is a robust business cycle fact that does not only
pertain to certain types of recessions. It is therefore encouraging to see that different
types of shocks, all of which are considered potentially important drivers of the US
business cycle, induce the procyclical skewness pattern.

Splitting up the linear projections in equation (18) into the top-10% and bottom-
90% firm size bins also confirms the evidence conveyed in Figure 3. The skewness
of large firms’ growth rates drops considerably more than for the smaller firms with
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Figure 6: Comovement of growth and skew after aggregate shocks
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Note: The 90% confidence bands are based on Newey-West standard errors. Shock magnitudes are
normalized to be one standard deviation. The signs of the sentiment and the TFP shock are reversed to
be contractionary.
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striking regularity. This result is displayed in Figure 7. Small firms experience almost
no effect on skewness, whereas the skewness index of large firms drops by −0.04 to
−0.06. Through the lens of our model, this is evidence of price taking and price setting
behavior among small and large firms, respectively.

In Appendix D.1, we corroborate the results of this section using a bottom-up ap-
proach to impulse responses. Our findings are highly robust to this alternative ap-
proach.

4.3 Aggregate Factors Explain Skewness Fluctuations

We decompose sales growth rates and thereby cross-sectional skewness into an aggre-
gate and an idiosyncratic component using eq. (17). We define as the aggregate compo-
nent the contribution of the business cycle to individual growth rates, and the idiosyn-
cratic component as any residual random fluctuation. The evidence from the previous
literature regarding the importance of both components to cross-sectional skewness is
mixed: Ilut et al. (2018) find no significant skewness in establishment-level TFP shocks,
while Salgado et al. (2025) argue for strong procyclical skewness in TFP shocks com-
puted using various methods. Neither approach allows for clear conclusions about
the relative importance of idiosyncratic shocks: Even if TFP shocks are not skewed as
in Ilut et al. (2018), there may be other idiosyncratic shocks with a skewed distribution
that drive skewness in sales growth rates; even if TFP shocks are skewed as in Salgado
et al. (2025), their contribution to sales growth rates may be minute because the shocks
are small20. Focusing on skewness in a particular idiosyncratic shock can therefore not
provide conclusive evidence about whether skewed idiosyncratic shocks cause cross-
sectional skewness unless the shock is both skewed and explains a significant share of
variation in sales growth rates.

We decompose sales growth rates into aggregate and idiosyncratic components
using eq. (17). The same approach is used in Herskovic et al. (2016) to extract the
idiosyncratic component of sales growth rates. We use the two components to study
their impact on cross-sectional skewness. The results obtained this way are conserva-
tive in the sense that the idiosyncratic component may still contain aggregate fluctu-
ations that firms could respond to in a nonlinear fashion. However, the idiosyncratic
component is certain to capture all firm-specific sources of variation21. If skewness in
idiosyncratic shocks affects skewness in sales growth rates, the idiosyncratic compo-
nent must explain a significant share of the skewness in growth rates. The estimates

20Panel regressions in Salgado et al. (2025) confirm this intuition. The skewness in TFP shocks ex-
plains virtually none of the variation in firm-level sales, employment, or investment growth as observed
from the R2 values of zero reported in Table 2 of their paper.

21This is true except under a network perspective in which idiosyncratic shocks may cause co-
movement across firms that is perceived as aggregate fluctuations by the PCA algorithm. See Foerster
et al. (2011) for a discussion of this point.
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Figure 7: Skewness response of small and large firms
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from this approach therefore provide an upper bound for the importance of skewness
in the idiosyncratic component in explaining skewness in growth rates.

Table 4: Common vs idiosyncratic drivers of skewness

No. Factors: 1 4 8
Correlations with skewness:
ρ
(
skewu, skewg

)
0.89 0.76 0.72

ρ
(
skewa, skewg

)
0.68 0.72 0.81

Decomposition of variation in skewness:
R2

u 0.21 0.26 0.32
R2

a 0.79 0.74 0.68
Fit of aggregate component:
R2

i q(0.25) 0.01 0.09 0.16
R2

i q(0.5) 0.06 0.20 0.30
R2

i q(0.75) 0.18 0.36 0.47
Observations 398,316

Note: Each column refers to a decomposition using a different number of principal components. The
decomposition uses the weighted PCA algorithm of Delchambre (2015) with zero weights for missing
values and unit weights for all other observations. The first two rows measure the correlation of 90%
Kelley skewness in sales growth rates with the skewness in the idiosyncratic components (skewu) or the
aggregate components (skewa). The following two rows decompose the variation in Kelley skewness
into the contributions by skewness in the idiosyncratic part and skewness in the aggregate part. The
last three rows show the 25, 50, and 75% quantile of the distribution across R2 from firm-level time
series regressions of the sales growth rate onto the aggregate component. The number of observations
refers to the actual firm-quarter observations.

4.3.1 Factor Decomposition Results

Table 4 shows the results. Skewness across the aggregate components ai,t correlates
closely with skewness in growth rates even with only one factor included in the de-
composition (row 1). The comovement between skewness in the idiosyncratic compo-
nents and in the growth rates decreases with the number of factors, though it remains
sizeable even for the case of eight factors (row 2).

Correlations can be deceiving because comovement patterns may be strong while
magnitudes of variation differ. To analyze which component explains most of the vari-
ation in Kelley skewness, we decompose the numerator of the skewness measure. The
numerator is the component representing asymmetries in the distribution, while the
denominator is solely a scaling factor ensuring Kelley skewness always lies between
−1 and 1.

Let the numerator of the Kelley skewness expression be η (X) ≡ [X]0.9 − 2[X]0.5 +

[X]0.1, where [X]r indicates the r-quantile of X := {xi}i=1,...,N. The decomposition of
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demeaned growth rates ḡi,t := gi,t − γi is then

η (ḡt)

[ḡt]0.9 − [ḡt]0.1
=

η (at)

[ḡt]0.9 − [ḡt]0.1
+

η (εt)

[ḡt]0.9 − [ḡt]0.1
+ ∆at + ∆εt , (19)

where at and εt refer to the distributions of the aggregate and the idiosyncratic com-
ponent. Because the ordering of firms within these three distributions may change
relative to the ordering of sales growth rates, the decomposition is not exact. The dif-
ference is captured by approximation errors

∆a =
(
[ãt]0.9 − [at]0.9 + 2 ([ãt]0.5 − [at]0.5) + [ãt]0.1 − [at]0.1

)
/
(
[ḡt]0.9 − [ḡt]0.1

)
(20)

with [ãt]r denoting the aggregate component of the r-quantile of the growth rate distri-
bution gt, and by ∆ε, which is defined analogously to ∆a. Given these objects, we can
compute partial contributions to explained variance in growth rate skewness. Of the
skewness that is unexplained by the approximation error, the idiosyncratic component
explains only 25% (R2

ε ). The remaining 75% of unexplained variation are attributed to
skewness in the common factors (R2

a). This decomposition result is broadly stable
across the number of aggregate factors used. Because the skewness of the different
components is not orthogonal, the explained variance attributed to each component
depends on the ordering of the variables. The results presented here order the id-
iosyncratic component first to give conservative results for the aggregate component.
Flipping the ordering indicates a contribution between 92% and 96% for the aggre-
gate component (result not shown). To stress the importance of aggregate factors in
driving cross-sectional skewness, Figure 8 shows that skewness in the idiosyncratic
component adds little information beyond the procyclical pattern present in skewness
of the common component. The figure also demonstrates that the approximation er-
ror of eq. (19) is small since the common and idiosyncratic contributions (orange line)
closely track the skewness measure (blue line), apart from deviations in the early 1990s
and mid-2010s.

The weak contribution of the idiosyncratic component is not due to a small size
of that component. For most firms, the idiosyncratic component remains large after
removing the aggregate factors. The last three rows of Table 4 show the 25%, 50%, and
75% quantiles of the distribution of R2 values from firm-level time series regressions of
the demeaned sales growth rate onto the aggregate factors. Even when including eight
factors, the aggregate component explains no more than 30% of time series variation
for half the firms (R2

i q(0.5)), and explains more than 47% of variation for only 25% of
firms (R2

i q(0.75)). To emphasize, the first column of Table 4 shows that one aggregate
factor explains 79% of the variation in skewness (R2

a) even though it only explains 6%
of firm-level sales growth variation on average.
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Figure 8: Skewness in common vs idiosyncratic component
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Note: The blue line is the skewness in demeaned growth rates. The red line shows the contribution of
skewness in the aggregate component (η(at) in equation (19)) to skewness in demeaned sales growth
rates. The green line adds the contribution of skewness in the idiosyncratic component (η(εt) in equa-
tion (19)) to the green line.

5 Conclusion

This paper has documented new evidence on the shape of firm growth distributions
over the business cycle. Using Compustat data, we confirmed that skewness is pro-
cyclical, becoming negative in recessions and positive in booms. We then showed
that this pattern is strongly size dependent: large firms display much larger swings in
skewness than smaller firms. Finally, we established that countercyclical variance am-
plifies these effects, with increases in volatility leading to disproportionately negative
skewness among the largest firms. Taken together, these findings point to a systematic
size gradient of skewness in the cross-section of firms.

We provided a simple framework to interpret these results. When firms possess
market power, Marshall’s Second Law of Demand implies that symmetric shocks trans-
late into concave output adjustments. This mechanism generates systematically skewed
growth responses, with the effect increasing in the degree of market power and in the
variance of shocks. The model rationalizes both the procyclicality of skewness and its
dependence on firm size, and it matches the empirical impulse responses we estimate
from the data. In this sense, skewness is not a primitive property of the shock distri-
bution but an endogenous outcome of firm behavior under imperfect competition.

The results carry important policy implications. Skewness means that observed
outcomes systematically differ from the underlying incidence of shocks. If policymak-
ers allocate support or compensation in proportion to realized outcomes, they risk
mistaking endogenous asymmetries for differences in exposure. Large firms in par-
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ticular may appear to be disproportionately hit during downturns, when in fact their
outcomes reflect amplified responses due to market power. Effective stabilization or
redistribution policies must therefore look beyond average growth and volatility, and
take into account how market structure shapes the distribution of outcomes across
firms. Ignoring these mechanisms risks systematic misallocation of resources and a
reinforcement of downside risks in aggregate fluctuations.
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Online Appendix
Monopolistically Skewed Business Cycles

A Proofs

A.1 Theory

Proof of Lemma 1. Marginal revenue is mr(q) = p′(q)q + p(q). Any solution to the mo-
nopolist’s problem must live within a non-empty, open interval, D, on which mr is
strictly positive. Thus, p′(q)q + p(q) > 0 ⇔ E p(q) > −1. By log-concavity of p, we
have p′′(q)p(q)− p′(q)2 ≤ 0, thus, on D,

mr′(q) = 2p′(q) + p′′(q)q

= p′(q)(2 + qp′′(q)/p′(q))

≤ p′(q)(2 + qp′(q)/p(q))

= p′(q)(2 + E p(q)) < 0,

because p′(q) < 0. Since p is decreasing to 0, p′
q→∞−→ 0 and some q⋆ exists for which

mr(q⋆) = c′(q) (recall that c′ is increasing). ■

Proof of Lemma 2. We prove each claim individually.

1. Note that X is unskewed because Z is symmetric about its mean. Write

skew[g(X)] =
[g(Xε) + g(X1−ε)]/2 − g(X0.5)

(g(X1−ε)− g(Xε)/2)

≤ g ((Xε + X1−ε) /2)− g(X0.5)

(g(X1−ε)− g(Xε))/2

=
g(X0.5)− g(X0.5)

(g(X1−ε)− g(Xε))/2
= 0

by Jensen’s inequality and unskewedness of X.

2. Let Y = g(X), then Y has negative skew. Consider a second-degree Taylor ex-
pansion of h about the median of Y

h∗(y) = h(Y0.5) + h′(Y0.5)(y − Y0.5) +
h′′(Y0.5)

2
(y − Y0.5)

2
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and rewrite the skewness coefficient:

skew[h(Y)] ≈

(
Y1−ε+Yε

2 − Y0.5

) (
1 + h′′

2h′
(Y1−ε−Y0.5)

2+(Yε−Y0.5)
2

(Y1−ε−Y0.5)+(Yε−Y0.5)

)
(

Y1−ε−Yε

2

) (
1 + h′′

2h′ [(Y1−ε − Y0.5) + (Yε − Y0.5)]
)

= skew[Y]

(
1 + h′′

2h′
(Y1−ε−Y0.5)

2+(Yε−Y0.5)
2

(Y1−ε−Y0.5)+(Yε−Y0.5)

)
(

1 + h′′
2h′ [(Y1−ε − Y0.5) + (Yε − Y0.5)]

) ,

︸ ︷︷ ︸
=:∆

where one notes that ∆ > 1 since h′′ < 0 < h′. Hence skew[h(Y)] ≈ ∆ · skew[Y] <
skew[Y] < 0.

3. Finally, consider some positive number a and the mapping Z 7→ g(a · Z). Take a
second order Taylor expansion over the median of Z,

g∗(a · x) = g(0) + ag′(0)(x − Z0.5) +
a2g′′(0)

2
(x − Z0.5)

2,

substituting into the skewness measure yields

skew[g(aZ)] ≈ ag′
=0︷ ︸︸ ︷

(Z1−ε + Zε − 2Z0.5) +
a2g′′

2 ((Zε − Z0.5)
2 + (Z1−ε − Z0.5)

2)

ag′(Z1−ε − Zε) +
a2g′′

2
[(Z1−ε − Z0.5)

2 − (Zε − Z0.5)
2]︸ ︷︷ ︸

=0

)

=
a2g′′

2 ((Zε − Z0.5)
2 + (Z1−ε − Z0.5)

2)

ag′(Z1−ε − Zε)

=

a2g′′
2

(
Z1−ε−Zε

2

)2

ag′(Z1−ε − Zε)

= a
g′′

g′
(Z1−ε − Zε) /8.

Therefore, skew[g(aZ)] ≈ a g′′
g′ (Z1−ε − Zε) /8. Setting a = 1 yields the skew-

ness for the transformed variable g(Z), and an explicit formula to part (1) of the
Lemma. Additionally, increasing a yields more negative skewness for a concave,
increasing transformation (g′′ < 0 < g′) and more positive skew for a convex
increasing transformation.

■

Proof of Lemma 3. Define p̃(q̂) := p(exp q̂), then ln( p̃(q̂) + p̃′(q̂)) = ln ◦ mr(eq̂). Note
first that H is (strictly) concave if and only if ln ◦ mr(eq̂) is strictly concave, since the
marginal cost part of the equation is linear. The two assertions on the list as proved as
follows:
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1. This condition also implies that H is (strictly) concave. By eq. (4), H(q̂) = ϵ and
thus Q⋆ = (ln ◦H)−1. Since marginal revenue is strictly decreasing on D, so is
H. Suppose now that H is (strictly) concave. This implies that H−1 is (strictly)
concave and decreasing. (This fact is treated in exercise 3.3 of Boyd and Vanden-
berghe, 2004.)

2. Rewrite concavity of (ln ◦ mr)(eq̂) using the following identities:

E p =
∂ ln p(q)

∂ ln q
=

∂ ln p̃(q̂)
∂q̂

=
p̃′(q̂)
p̃(q̂)

(A.1)

E2p
(
eq̂) = ∂E p

∂q
q
E p

=

∂E p
∂ ln q

E p
=

p̃′′(q̂)
p̃(q̂) − p̃′(q̂)2

p̃(q̂)2

E p
=

p̃′′(q̂)
p̃′(q̂)

− E p
(
eq̂) (A.2)

Note that the condition is equivalent to the following chain of expressions being
decreasing in q̂:

p̃′(q̂) + p̃′′(q̂)
p̃(q̂) + p̃′(q̂)

=
1 + E p

(
eq̂)+ E2p

(
eq̂)

1 + 1/E p
(
eq̂
) = E p

(
eq̂)+ E p

(
eq̂)

E p
(
eq̂
)
+ 1

E2p
(
eq̂) (A.3)

which is decreasing in q̂ if and only if it is decreasing in q = eq̂.

3. We write the elasticity of marginal revenue as

∂ ln[p(q)(1 + E p(q))]
∂ ln q

= E p(q) +
∂ ln(1 + E p(q))

∂ ln q

= E p(q) +
∂E p(eln q)

∂ ln q

1 + E p(q)

= E p(eq̂) +
E p(eq̂) · E2p(eq̂)

1 + E p(eq̂)

Finally, the two statements with explicit dependency on α are proven by inspection.
■

Proof of Proposition 2. See section A.2 ”Monotone Skewness”. ■

Proof of Proposition 5. Continuing the second part of the proof in the main text: Sup-
pose, C ̸= 0. Then

d
dq

ln(p(q)) =

A
B + 1

BqB−1 − C
q2

A
B + 1

qB +
C
q

,
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and

d2

dq2 ln(p(q)) =

(
A

B + 1
B(B − 1)qB−2 +

2C
q3

)(
A

B + 1
qB +

C
q

)
−
(

A
B + 1

BqB−1 − C
q2

)2

(
A

B + 1
qB +

C
q

)2

must be < 0 by log-concavity. As q ↓ 0, the dominating term is C/q4, and thus C < 0

is necessary to ensure log-concavity. But if C < 0, then
(

A
B + 1

qB +
C
q

)
< 0 for small

enough q. But this implies(
A

B + 1
B(B − 1)qB +

3C
q

)
>

A
B + 1

BqB > q

for all small q, which cannot hold since the LHS tends to −∞ as q ↓ 0. Thus, C = 0 is
the only solution. ■

Proof of Proposition 4. Take a concave function f with f ′ < 0 and a random variable Z
that is symmetrically distributed, and let a > 1 be a constant. We want to calculate the
skewness of X − Y where X = f (Z), Y = f (aZ), which is

skew[X − Y] =
(X − Y)r + (X − Y)1−r − 2(X − Y)0.5

(X − Y)1−r − (X − Y)r
=

(X − Y)r + (X − Y)1−r

(X − Y)1−r − (X − Y)r
.

In the proposition, f is the first order condition, Z = ϵσ and a = σ/σ. This is the case
in which t is a time of boom. We want to show that skew[X − Y] > 0. Because f is
concave, we have f (Z)− f (aZ) is increasing in Z, so

(X − Y)r = f (Zr)− f (aZr) < 0 < ( f (Z1−r)− f (aZ1−r)) = (X − Y)1−r.

By concavity of f and since (Zr − aZr) = (aZ1−r − Z1−r), the sum (X − Y)1−r + (X −
Y)r is positive, which we needed to show. Clearly, at time of recession, the skewness
flips sign.

To compute the effect of lower market power during a boom, one computes the
skewness for a less concave first order condition φ ◦ f , where φ is convex. The proof
rewrites the skewness in terms of the fraction F = −(X − Y)r/(X − Y)1−r and shows
that skew[X − Y] decreases in F and that the presence of φ increases F. Details are left
to the reader. ■
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A.2 Monotone Skewness

A.2.1 Proof of Proposition 2

We develop a series of Lemmas to eventually prove that skewness is monotone in
market power, α. We apply the notion of relative convexity due to Palmer (2003).

Definition A.1. Consider two strictly monotone functions f , g. f is convex relative to a g if
there exists a convex, strictly increasing transformation s such that s ◦ f = g. We write f ≻ g.
Conversely, f is concave relative to g if there exists a strictly increasing, concave function s
such that s ◦ f = g. We write f ≺ g.

Note that the inverse of a strictly increasing, convex function exists and is strictly
increasing and concave, and vice versa. Hence, f ≺ g if and only if g ≻ f . The
following is a criterion for relative concavity for twice differentiable functions.

Lemma A.4 (Relative Concavity of Twice Differentiable Functions). If f , g ∈ C2 then
the following are equivalent:

g ≺ f ⇐⇒ g′′

|g′| <
f ′′

| f ′| .

Proof. See Palmer (2003). ■

We now relate MMPEα to this notion of relative concavity:

Lemma A.5 (MMPEα implies relative concavity, ϕα ≺ ln p∗). As before, denote marginal
profits in terms of log sales, q̂, by H, but add a subscript for market power. Write

Hα(q̂) =

log inverse demand︷ ︸︸ ︷
α ln(p∗(eq̂)) +

log inverse markup, ≡ϕα(q̂)︷ ︸︸ ︷
ln
(

1/µ(eq̂)
)

+

log marginal cost, c′(eq̂)︷ ︸︸ ︷
ln η − (η − 1)q̂

= α ln( p̃∗(q̂)) + ϕα(q̂) + c′(eq̂).

Suppose, ϕα and ln p∗ are both concave and decreasing. Then:

ϕα ≺ ln p∗(exp(·)) ⇐⇒ MMPEα.

Proof of Lemma A.5. The proof does not depend on the value of α, only that at this value
MMPEα holds. Hence, suppress α subscripts and the ∗ superscript in the following
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equations. Note that f ≺ g iff f ◦ exp ≺ g ◦ exp. Then:

ln
(

1 + E p(eq̂)
)
≺ ln

(
p(eq̂)

)
⇔ ln (1 + E p(q)) ≺ ln (p(q))

⇔
∂2

∂q2 ln (1 + E p(q))

− ∂
∂q ln (1 + E p(q))

<

∂2

∂q2 ln(p(q))

− ∂
∂q ln(p(q))

⇔
∂2

∂q2 ln
(

1
µ(q)

)
− ∂

∂q ln
(

1
µ(q)

) <

∂2

∂q2 ln(p(q))

− ∂
∂q ln(p(q))

⇔
∂2

∂q2 ln(µ(q))
∂
∂q ln(µ(q))

>

∂2

∂q2 ln(p(q))
∂
∂q ln(p(q))

Note that f ′′(x)
f ′(x) = ∂

∂x ln ( f ′(x)) and with f = ln ◦ µ, we have f ′(x) = µ′(x)
µ(x) . Since the

same goes with f = ln ◦ p, we obtain:

⇔ ∂

∂q
ln
(

µ′(q)
µ(q)

)
>

∂

∂q
ln
(

p′(q)
p(q)

)
⇔ ∂

∂q

(
ln
(

µ′(q)
µ(q)

)
+ ln q − ln

(
p′(q)
p(q)

)
− ln q

)
> 0

⇔ ∂

∂q
(ln (Eµ(q))− ln (E p(q))) > 0

⇔ ln
(Eµ(q)
E p(q)

)
is increasing

⇔ Eµ(q)
E p(q)

is increasing

■

The next Lemma on relative concavity is new and applies directly to our setting.

Lemma A.6. Let f , g, h ∈ C2, X ⊆ R, f : X → R, g : X → D ⊂ R and h : D → R. Let
a > 0, g ≺ f ≺ Id, and f ′ < 0, g′ < 0. Then

1. multiply-and-transform induces concavity:

(h ≺ Id ∧ h′ > a) =⇒ a f + h ◦ g ≺ f + g.

2. multiply-and-transform induces convexity:

(h ≻ Id ∧ h′ < a) =⇒ a f + h ◦ g ≻ f + g.
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Proof. We only proof the first implication, because the proof of the second follows the
same logic with flipped sign. Using the criterion of Lemma A.4, we need to verify that

a f ′′(x) + h′(g(x))g′′(x) + h′′(g(x))g′(x)2

−[a f ′(x) + h′(g(x))g′(x)]
<

f ′′(x) + g′′(x)
−[ f ′(x) + g′(x)]

.

Because h′′(g(x))g′(x)2

−[ f ′(x)+h′(g(x))h′(x)] < 0 by concavity of h, it suffices to check that

a f ′′(x) + h′(g(x))g′′(x)
−[a f ′(x) + h′(g(x))g′(x)]

<
f ′′(x) + g′′(x)

−[ f ′(x) + g′(x)]
.

Rearranging, we obtain

(a f ′′ + h′g′′)( f ′ + g′) > ( f ′′ + g′′)(a f ′ + h′g′)

⇐⇒ �
���a f ′′ f ′ + a f ′′g′ + h′g′′ f ′ +

��
��h′g′′g′ >�

���f ′′a f ′ + f ′′g′h′ + g′′a f ′ +
��

��g′′h′g′

⇐⇒ h′(g′′ f ′ − f ′′g′) > a(g′′ f ′ − f ′′g′)

But then note that g′′ f ′ − f ′′g′ > 0 ⇐⇒ g ≺ f , hence the last line is equivalent to
h′ > a, which is true by supposition. ■

Lemma A.7. Let f , g, h ∈ C2 and f ≺ g ≺ Id with f ′′ < g′′ as well as f ′ < 0, g′ < 0. Let
v(x) := bx + c with b < 0, c ∈ R. Then

f + v ≺ g + v

Proof. Evaluate the differentiability criterion directly:

f ′′

| f ′ + b| = − f ′′

f ′ + b
< − g′′

g′ + b
=

g′′

|g′ + b|
⇐⇒ f ′′(g′ + b) > g′′( f ′ + b)

⇐⇒ f ′′g′ − g′′ f ′ > (g′′ − f ′′)b.

Then we have f ′′g′ − g′′ f ′ > 0 by f ≺ g and (g′′ − f ′′) > 0, too. Hence

⇐⇒ f ′′g − g′′ f
g′′ − f ′′

> b,

which is true as b < 0. ■

We are now ready to prove skewness monotonicity in α. Denote the marginal rev-
enue in terms of q̂ by

Hα(q̂) = α ln( p̃∗(q̂)) + ln
(

1 + α
p̃∗′(q̂))
p̃∗(q̂))

)
+ ln η − (η − 1)q̂

= α ln( p̃∗(q̂)) + ϕα(q̂) + ln η − (η − 1)q̂.
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Note that ϕα < 0 because p̃∗′(q̂)
p∗(q̂) = E p(eq̂) ∈ (−1, 0). Consider two degrees of market

power α1 > α0 and set the subscripts of H and ϕ to 0 and 1, respectively. First, assume
MMPEα0 , so the relative concavity condition holds for the low market power firm.
Then, we have

ϕ1 = h(ϕ0(x)) with

h(y) := ln
(

1 +
α1

α0
ey
)

, ∀ y ∈ (−∞, 0).

The function h is strictly concave and increasing with h′(y) > α1
α0

. This follows from

h′(y) =
ey

α0
α1

− 1 + ey > 0,

h′′(y) =
α0/α1 − 1( α0

α1
− 1 + ey

)2 < 0,

and plugging in. We use Lemma A.6 part 1 with the h we just found as well as g = ϕ0,
f = ln ◦ p̃∗ and a = α1

α0
. Therefore,

α1

α0
· α0(ln ◦ p∗) + h ◦ ϕ0 ≺ α0(ln ◦ p∗) + ϕ0.

That is, the high market power (α1) firm features a more concave LHS of its first order
condition. Speaking loosely, its marginal revenues are more concave.

Second, we can follow the same steps under the assumption of MMPEα1 . Now, h
satisfies the conditions of Lemma A.6 part 2. We arrive at the conclusion that, again,
the high-market power firm has a more concave marginal revenue in log-log space.

We finally need to add the linear terms coming from the marginal cost back in.
Here, note that second derivative of the left expression is necessarily smaller than that
of the right. Thus, Lemma A.7 is applicable with v(x) = −(η − 1)x+ ln η and therefore

H1(q̂) = α1(ln ◦ p∗)(q̂) + ϕ1(q̂) + ln η − (η − 1)q̂

≺ α0(ln ◦ p∗)(q̂) + ϕ0(q̂) + ln η − (η − 1)q̂ = H0(q̂).

Under MMPEα we thus conclude that concavity of Hα increases in market power.
Proposition 2 asserts that this translates into more left-skewed growth rates for higher
market power.

Proof of Proposition 2 (final bits). We need to show that the inverse, H−1
1 , of the high-

market power firm is more concave than H−1
0 . The relative ordering of skewness then

follows from Lemma 2 (2). Note that by supposition, H0 = ϕ ◦ H1 for a strictly
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increasing, convex function ϕ. We collect the first and second derivatives:

H′
0(q̂) = ϕ′(H1(q̂))H′

1(q̂)

H′′
0 (q̂) = ϕ′′(H1(q̂))H′

1(q̂)
2 + ϕ′(H1(q̂))H′′

1 (q̂).

Note that for any invertible, twice differentiable function f holds ( f−1)′(y) = 1/ f ′(x)
and ( f−1)′′(y) = − f ′′(x)/ f ′(x)3 for y = f (x). We apply this insight with ϵ = H0(q̂) =
H1(q̂):

(H−1
0 )′′(ϵ) = −ϕ′′(H1(q̂))H′

1(q̂)
2 + ϕ′(H1(q̂))H′′

1 (q̂)
(ϕ′(H1(q̂))H′

1(q̂))
3

= − ϕ′′(ϵ)
ϕ′(ϵ)3H′

1(q̂)
− H′′

1 (q̂)
ϕ′(ϵ)2H′

0(q̂)3

(H−1
0 )′(ϵ) =

1
ϕ′(H1(H−1

0 (q̂)))H′
1(H−1

0 (ϵ))

=
1

ϕ′(ϵ)H′
1(q̂)

.

Therefore,

(H−1
0 )′′(ϵ)

|(H−1
0 )′(ϵ)|

= − (H−1
0 )′′(ϵ)

(H−1
0 )′(ϵ)

= ϕ′′(ϵ)− (H−1
1 )′′(ϵ)

(H−1
1 )′(ϵ)

= ϕ′′(ϵ) +
(H−1

1 )′′(ϵ)

|(H−1
1 )′(ϵ)|

and since ϕ′′ > 0, we have H−1
1 ≺ H−1

0 . Therefore, H−1
1 is more concave and there

exists a concave, strictly increasing transformation mapping H−1
0 to H−1

1 . ■

A.2.2 Proof of Proposition 3, Implication (10)

For this section, note that MSLD’, MMPEα and relative concavity are strict inequali-
ties/relations. As argued in Lemma A.5, MMPEα is equivalent to the technical condi-
tion

1
α

ln (1 + αE p∗(·)) ≺ ln (p∗(·)) . (A.4)

Because concavity of the LHS is increasing in α (this was shown in Lemma A.5), one
only needs the relation to hold strictly at the limit α → 0, i.e.

E p∗(·) ≺ ln (p∗(·)) , (A.5)

which states that the elasticity of the inverse demand function is more concave than
its logarithm. We have thus proven:

Lemma A.8. For any α ∈ (0, 1]: E p∗(·) ≺ ln (p∗(·)) =⇒ ln (1 + αE p∗(·)) ≺ ln (p∗(·))
(that is, MMPEα).
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Then note the following Lemma:

Lemma A.9. E p∗(·) ≺ ln (p∗(·)) ⇐⇒ E2p∗ is strictly increasing.

Proof. Following the steps similar to the proof of Lemma A.5, we obtain

E p∗(·) ≺ ln p∗(·)

⇐⇒ − (E p∗)′′

(E p∗)′
< − (ln p∗)′′

(ln p∗)′

⇐⇒ − ∂

∂q
ln[−(E p∗)′] < − ∂

∂q
ln[−(ln p∗)′]

⇐⇒ ∂

∂q
ln[−(E p∗)′] >

∂

∂q
ln[−(ln p∗)′]

⇐⇒ ∂

∂q
(ln[−(E p∗)′]− ln[−(ln p∗)′]) > 0

⇐⇒ ∂

∂q

(
ln

−(E p∗)′

−(ln p∗(q))′

)
> 0

⇐⇒ ln
(E p∗)′

(ln p∗(q))′
is increasing

⇐⇒ (E p∗)′

(p∗)′(q)/p∗(q)
is increasing

⇐⇒ (E p∗)′

q(p∗)′(q)/p∗(q)
q is increasing

⇐⇒ (E p∗)′

E p∗
q is increasing

⇐⇒ E2p∗ is increasing

■

We now tie the proof together. We follow the approach of Mrázová and Neary
(2017), who express local properties of (inverse) demand functions in terms of three
unit-free statistics:

ε(x) ≡ E p∗(x) =
xp∗′(x)

p(x)
, ρ(x) ≡ xp∗′′(x)

p∗′(x)
, χ(x) ≡ xp∗′′′(x)

p∗′′(x)
.

The second quantity, ρ, measures the curvature of demand, and must be strictly larger
than −2 by log-concavity of p∗. The third, χ, is also known as the coefficient of relative
temperance of Eeckhoudt et al. (1995). We then have the following lemma, which im-
plies (10).

Lemma A.10. (1) If MSLD’ holds strictly for all α ∈ (0, 1], then

(ρχ − ρ2 + ρε) ≥ 0.
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(2) An increasing superelasticity, E2p∗, implies that MMPEα holds for all α ∈ (0, 1]. The
former is equivalent to

(ρχ − ρ2 + ρε) + (ε2 − ε − 2) > 0.

(3) An increasing superelasticity, E2p∗, implies MSLD’ for any α ∈ (0, 1].

Proof. Part 1: First, note that marginal revenue is now given by mr(q) = p∗(q)α(1 +

αE p∗(q)). We calculate the elasticity, which is

α
p∗′

p∗
q + α

∂
∂ ln qE p∗

1 + αE p∗
= α

p∗′

p∗
q + α

1 + p∗′′
p∗′ q − p∗′

p∗ q

1 + α
p∗′
p∗ q

(A.6)

where we have used the identities

∂

∂ ln q
E p∗ =

∂
∂qE p∗

E p∗
q and

∂

∂q
E p∗ =

p∗′

p∗′
+

p∗′′

p∗′
−
(

p∗′

p∗

)2

q. (A.7)

MSLD’ states that the first derivative of this expression must be positive. We take ∂
∂q .

Doing so, we apply the definitions of ϵ, ρ, χ and use

∂

∂q
ε =

∂

∂q
p∗′

p∗
q =

1
q
(ρε + ε − ε2),

∂

∂q
ρ =

∂

∂q
p∗′′

p∗′
q =

1
q
(ρχ + ρ − ρ2). (A.8)

Doing so yields, for all α ∈ (0, 1]

α
1
q
(ρε + ε − ε2) +

α
(1 + αε)

[
− 1

q (ρε + ε − ε2) + 1
q (ρχ + ρ − ρ2)

]
− α 1

q (ρε + ε − ε2)(1 + ρ − ε)

(1 + αε)2 > 0

⇐⇒ (ρε + ε − ε2) +
(1 + αε)

[
− (ρε + ε − ε2) + (ρχ + ρ − ρ2)

]
− αε(1 + ρ − ε)2

(1 + αε)2 > 0

⇐⇒ (ρε + ε − ε2) +

[
− (ρε + ε − ε2) + (ρχ + ρ − ρ2)

]
(1 + αε)

+
−αε(1 + ρ − ε)2

(1 + αε)2 > 0

(A.9)

which implies, as we take α → 0

(ρχ + ρ − ρ2) ≥ 0 (A.10)

Part 2: By Lemmas A.8 and A.9, we only need to check the second part (equivalence
of eq. (9) to the inequality). To this end, note that for any thrice differentiable function
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f , we have

(E f )′(x) = x
f ′′

f
+

f ′

f
− x

(
f ′

f

)2

= (ρ f (x) + 1 − ε f (x))ε f (x)/x

(E f )′′(x) =
f ′′

f
+

f ′′′ f − f ′′ f ′

f 2 x +
f ′′ f − ( f ′)2

f 2 −
((

f ′

f

)2

+ 2x
f ′

f
f ′′ f − ( f ′)2

f 2

)
= ρ f (x)ε f (x)/x2︸ ︷︷ ︸

I

+ χ f (x)ρ f (x)ε f (x)− (ρ f (x)ε f (x)2)/x2︸ ︷︷ ︸
I I

+ (ρ f (x)ε f (x)− ε f (x)2)/x2︸ ︷︷ ︸
I I I

− (ε f (x)2 + 2ε f (x)2(ρ f (x)− ε f (x)))︸ ︷︷ ︸
IV

=
ε f (x)

x2

(
ρ f (x)(χ f (x) + ε f (x) + 2)− 2ε f (x)(1 + ε f (x))

)
Moreover,

∂2 ln f (x)
∂x2

∂ ln f (x)
∂x

=
1

χ f (x)
(ρ f (x)− ε f (x)).

Therefore, the condition can be written as (note that p∗′ < 0, hence the inequality is
flipped and suppressing subscripts and arguments for brevity)

(ln p∗)′′

(ln p∗)′
<

ε′′

ε′

⇐⇒ ρ − ε <
ρ(χ + ε + 1)− 2(ε + 1)

ρ + 1 + ε

⇐⇒ ρχ − ρ2 + ρε + ε2 − ε − 2 ≥ 0

Part 3: Part (2) tells us that the inequality (A.9), which is equivalent to MSLD’ for a
given α, is implied if MMPEα holds for all α. This follows from the fact that ε2 − ε− 2 <

0. Additionally, in eq. (A.9), note that part ∗ is positive, so the inequality is implied if

(ρε + ε − ε2) +

[
− (ρε + ε − ε2) + (ρχ + ρ − ρ2)

]
(1 + αε)

> 0.

This, in turn, holds true if −(ρε + ε − ε2) + (ρχ + ρ − ρ2) > 0 which holds iff 2/ε ≤ ρ.
But this has to be the case, since 2/ε < −2 < ρ. Therefore: (E2p increasing) =⇒
(MMPEα ∀α ∈ (0, 1]) and (MMPEα ∀α ∈ (0, 1]) =⇒ (MSLD′ ∀α ∈ (0, 1]). ■
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A.2.3 Proof of Proposition 3, Implication (11)

Let inverse demand be p : R+ → R+, twice continuously differentiable with p′(q) <
0. Costs are isoelastic and convex: c̄ qη. Define the (negative) inverse-demand elasticity
ε(q) ≡ q p′(q)

p(q) (< 0), the curvature ρ(q) ≡ q p′′(q)
p′(q) , and the superelasticity ψ(q) ≡ q

ε(q) ε′(q).

(Equivalently, ψ(q) =
d ln |ε(q)|

d ln q
.) A useful identity obtained by direct differentiation

is

ψ(q) = 1 − ε(q) + ρ(q). (A.11)

Let q⋆(c̄) solve the monopolist’s problem maxq≥0 p(q) q − c̄ qη and let p⋆(c̄) =

p
(
q⋆(c̄)

)
. Note that q⋆(c̄) is strictly decreasing in c̄ (so

dq⋆

dc̄
< 0) (MONO). We want to

prove the claim: Suppose,

• (MSLD) ε′(q) < 0 (Marshall’s Second Law in this notation) (hence ψ(q) ≥ 0) and

• (PT↑) the pass-through w.r.t. the cost shifter c̄, τ(c̄) ≡ dp⋆(c̄)
dc̄ , is strictly increasing

in c̄.

Then ψ′(q) > 0 for all relevant q.

Proof: (1) Optimality and reduced-form τ(q): The first-order condition is

p(q) + q p′(q)− η c̄ qη−1 = 0. (A.12)

By the Implicit Function Theorem and p⋆(c̄) = p(q⋆(c̄)),

τ(c̄) = p′(q)
dq⋆

dc̄
=

η p′(q) qη−1

2p′(q) + q p′′(q)− η(η − 1)c̄ qη−2 , q = q⋆(c̄).

Use (A.12) to eliminate c̄ and substitute q p′(q) = ε(q) p(q) and q p′′(q) = ρ(q) p′(q) to
express τ purely as a function of q (and primitives):

τ(q) =
η ε(q) qη−1

ε(q)
(

ε(q) + ψ(q) + 2 − η
)
− (η − 1)

. (A.13)

(Identity (A.11) was used to eliminate ρ.)

(2) From (PT ↑) and (MONO) to τ′(q) < 0: Since
dq⋆

dc̄
< 0, the assumption

dτ

dc̄
> 0

implies, by the chain rule,

dτ(q)
dq

< 0 along q = q⋆(c̄). (A.14)
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(3) Differentiate τ(q) and sign it: Write (A.13) as τ(q) =
N(q)
D(q)

with

N(q) = η ε(q) qη−1, D(q) = ε(q)
(
ε(q) + ψ(q) + 2 − η

)
− (η − 1).

Using ε′(q) =
ψ(q) ε(q)

q
,

N′(q) = η qη−2 ε(q)
(
ψ(q) + η − 1

)
,

D′(q) = ε′(q)
(
2ε(q)+ψ(q)+ 2− η

)
+ ε(q)ψ′(q) = ε(q)

[
ψ(q)

q
(
2ε(q) + ψ(q) + 2 − η

)
+ ψ′(q)

]
.

Hence

dτ(q)
dq

=
N′(q)D(q)− N(q)D′(q)

D(q)2 =
η qη−2 ε(q)

D(q)2

×
{(

ψ(q) + η − 1
)

D(q)− ε(q)
[
ψ(q)

(
2ε(q) + ψ(q) + 2 − η

)
+ q ψ′(q)

]}
.

Because D(q)2 > 0 and ε(q) < 0, the inequality (A.14) is equivalent to(
ψ(q) + η − 1

)
D(q)− ε(q)

[
ψ(q)

(
2ε(q) + ψ(q) + 2 − η

)
+ q ψ′(q)

]
> 0. (A.15)

Substitute D(q) = ε(q)
(
ε(q) + ψ(q) + 2 − η

)
− (η − 1) and simplify; after canceling

like terms one obtains the linear inequality in q ψ′(q):

q ψ′(q) >
η − 1
−ε(q)

(
ψ(q) + η − 1

)
+ (η − 1)

(
1 − ε(q) + ψ(q)− (η − 1)

)
+ ψ(q)

(
− ε(q)

)
(A.16)

=
η − 1
−ε(q)

ψ(q)︸ ︷︷ ︸
≥0

+(η − 1)2
(

1
−ε(q)

− 1
)

︸ ︷︷ ︸
≥0

+(η − 1) (1 − ε(q)ψ(q))︸ ︷︷ ︸
≥0

+ψ(q)(−ε(q))︸ ︷︷ ︸
>0

.

(A.17)

The bracketed terms on the right-hand side are nonnegative because η ≥ 1, ε(q) < 0,
and by (MSLD) we have ψ(q) =

q
ε(q)

ε′(q) ≥ 0. Therefore the right-hand side of (A.16)

is strictly positive, which yields

q ψ′(q) > 0 =⇒ ψ′(q) > 0.

Conclusion: Under (MSLD), (Mono), and (PT ↑), the superelasticity ψ(q) is strictly
increasing in q. □
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B Supply Side Skewness

Up until now, we have focused on (negative) skew driven by the shape of the demand
curve, neglecting contributions of the cost function to skewness. We discuss two types
of cost functions which can contribute to skewed growth rates. Either approach rests
on the assumption that adjustment of some status quo (or the ‘current state’) is costly
in one direction and cheap in the other. This leads to a cost function with a kink located
at previous-period output, which immediately implies local log-convexity of the cost
function and locally left-skewed values of q̂.

We start from a price taking firm’s static profit maximization problem (suppressing
price taker subscripts),

max
q

q [ p̄ − c(q)], c(q) = eϵΨ(q).

Here, p̄ is the given output price, Ψ(q) is the baseline cost function, and the exponen-
tial term eϵ is a multiplicative cost shifter. The first-order condition equates marginal
revenue and marginal cost. Differentiating, we obtain

0 = p̄ − eϵ
(
Ψ(q) + qΨ′(q)

)
≡ p̄ − eϵmc(q),

where mc(q) is the slope of total cost. Taking logs yields lnmc(q) = log p̄ − ϵ. This
condition allows us to study how equilibrium output responds to the cost shifter. Dif-
ferentiating the FOC, one can show that

dq̂
dϵ

= − 1
Emc(q)

,
d2q̂
dϵ2 =

1
(Emc(q))2 (Emc)′(q)

dq
dϵ

.

Since dq/dϵ < 0 (higher costs reduce output), concavity of q̂ in ϵ requires that (Emc)′(q) ≥
0, i.e. that the elasticity of marginal cost is increasing in quantity. Put differently: if
mc(q) is log-convex, then q̂ is locally concave in the cost shifter ϵ. Now consider how
different frictions shape Ψ(q), and thereby mc(q).

Capacity adjustments Work on asymmetric capital adjustment costs goes back to
investment Q-theory. More recent seminal work which finds empirical evidence for
convex adjustment costs includes Cooper and Haltiwanger (2006). Meanwhile, Chris-
tiano et al. (2005) delivered an important milestone for the inclusion of such cost into
modern quantitative macroeconomic models. To build a simple model of this class,
suppose there is a baseline cost ψ0(q), but producing beyond installed capacity q̄ re-
quires increasingly costly effort. We assume q̄ = q0, so capacity is set to the steady-
state level of output. A reduced-form way to capture this structure is

Ψcap(q) = ψ0(q) + χ [q − q̄]ν+, ν > 1, χ > 0.
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Once output exceeds capacity, the derivative mc′(q) rises steeply (jumps, in fact), and
thus the elasticity Emc(q) is increasing. This satisfies the log-convexity condition, en-
suring that ln q is concave in ϵ locally around ln q0. Intuitively, expansions beyond ca-
pacity are disproportionately costly, so output falls quickly in response to cost shocks
but rises only sluggishly.

Customer acquisition The approach of embedding a customer base into the firm
problem was pioneered by Gourio and Rudanko (2014). Roldan-Blanco and Gilbukh
(2021) formalize a customer base through a matching model between customers and
firms. Through this approach, they capture rich business cycle dynamics. More re-
cently, Ignaszak and Sedlácek (2025) use customer bases as a device to analyze the
tension between productivity and profitability, and explain how the latter may be-
come uncoupled from the former.

Suppose, sales depend on a pre-existing base b plus new customers from acquisi-
tion effort a, with q ≤ b + H(a). Acquisition costs are convex, S(a), while customer
recruitment is concave, H(a). Assume that the firm has built a customer base for
steady state output in the past, hence b = q0. Embedding this into the per-unit cost
gives

Ψsell(q) = ψ0(q) +
S(a∗(q))

q
,

where a∗(q) is the optimal acquisition choice. By the envelope theorem, the shadow
value of an extra unit of demand, λ(q), enters marginal cost, and rises with q because
S′′ > 0 and H′′ < 0. Thus, as output expands beyond the base b, mc(q) grows increas-
ingly steep, again making Emc(q) increasing. This ensures local concavity of log q in ϵ.
The economic interpretation is that when demand is weak, the firm lets its base erode
(no acquisition), whereas when demand is strong, acquiring new customers is costly
and slow, so output cannot expand proportionally.

In both cases, the critical feature is that the marginal cost function becomes increas-
ingly steep as output rises. This makes the mapping from cost shocks ϵ to equilibrium
quantities concave in logs, and thereby generates the negative skewness in firm-level
growth rates. Existence of log-convexities in firms’ cost functions can explain some
pattern in Figure 3 (b). For a small size cutoff quantile, the plotted regression coef-
ficients taper off and become constant at about 2.2. This suggests that growth rate
skewness is still procyclical, even if market power, α, becomes small. Part of the rea-
son may be that shocks are inherently skewed, but a more structural explanation is
existence of log-convex cost functions even for price takers.

Yet, cost functions are unable to generate size dependence of skewness. To this ob-
servation, a demand-side oriented explanation caters nicely. Second, the approaches
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discussed below—capacity adjustments and customer acquisition cost—each only guar-
antee local skewness: growth rates relative to the steady state are skewed locally
around long run output, q0. That means, if the shock is not mean zero but, say, has
a positive support such that every firm i in the cross-section adjusts to some qi < q0,
then the negative skewness in growth rates is no longer guaranteed. In contrast, in-
voking ISID as a demand curve property immediately guarantees global left-skewness
of growth rates, ln q/q0.
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C Data Preparation

We start from the entire Compustat database at the quarterly frequency. After the
download, the data has 1,928,055 quarter-firm observations and covers the period
1961Q1 - 2022Q3. The date is defined using the item datacqtr, not the fiscal quar-
ter. The unique firm identifier is gvkey. We drop firms that are not incorporated
(variable fic) or headquartered (loc) in the United States. We remove any compa-
nies with an SIC code above 9000, which includes non-operating establishments. We
drop any observations with negative nominal sales (saleq) and remove all duplicates
of the firm-quarter identifier (gvkey and datacqtr).

Nominal sales are deflated with the GDP price deflator (USAGDPDEFQISMEI on
FRED) to obtain real sales si,t of firm i in quarter t. If a firm shows a missing value of
real sales in a period that is surrounded by non-missing sales observations, we fill the
missing value via linear imputation. If two missing values are adjacent, no imputation
is performed. Real sales growth is the year-on-year growth rate of quarterly real sales:
gi,t = ln(si,t)− ln(si,t−4).22 Aggregate real sales growth is

gt =
∑i si,t−4gi,t

∑i si,t−4
(A.18)

This way of computing aggregate sales ensures that only growth rates of firms are
considered that experience non-missing sales in both quarters. It is not biased by the
entry of new firms or exit of dying firms.

We construct several variables for firm characteristics, following Ottonello and
Winberry (2020), Crouzet and Mehrotra (2020), and Cloyne et al. (2023). Leverage is
the ratio of total debt (sum of items dlcq and dlttq) to total assets (atq). Net leverage
is the ratio of total debt minus net current assets (actq) to total assets. Liquid assets
(“liquidity ”) is the ratio of cash and short-term investments (cheq) to total assets.

This yields the full sample. The full sample of non-missing sales growth rate ob-
servations has 1,146,214 firm-quarter observations and covers the period 1962Q1 –
2022Q3. Additional steps yield the cleaned sample, which aims to remove sales growth
rate outliers:

1. Remove any firm-quarter observations with negative current assets (actq), total
assets (atq), or liquid assets.

2. Remove the observation if net current assets relative to total assets falls outside
of [−10, 10].

3. Remove observations with leverage above 10 or below zero.

22In unreported results, we confirm that all main results are robust to using growth rates defined as
gi,t =

si,t−si,t−4
si,t−4

instead of using log differences.
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4. Remove any observations with percentage sales growth rate (si,t − si,t−4) /si,t−4

below -1 (We do not apply this filter to log growth rates gi,t).
5. Remove any observations where the ratio of sales to total assets is in the top 0.1%

of observations. This is to clean any sales growth observations that may be due
to mistakes in the data.

6. To further account for growth rate outliers, we remove the top and bottom 1% of
growth rate observations in each quarter.

7. Since data on acquisitions is only available from 1983Q3 onwards, we remove all
earlier observations.

8. We remove any observations after 2021Q4 since Compustat may face a reporting
lag such that 2022 values may have been disproportionately missing at the time
of data collection.

The resulting sample covers the period from 1983Q3 until 2021Q4 and has 699,440
firm-quarter observations. We merge this sample with information on stock prices
(variable PCLOSE) and the first date of trading (BEGDAT) from CRSP using the PERMCO-
GVKEY linking table. We also merge the sample with information on dates of incorpora-
tion from Worldscope Fundamentals (variable INCORPDAT) using the CUSIP identifier.
This allows us to construct firm age as the minimum across 1) the date of the first
observation in Compustat, 2) the first date of trading from CRSP, and 3) the date of
incorporation as indicated in Worldscope Fundamentals. This approach makes use of
the well-populated and accurate information in Worldscope while avoiding negative
firm ages, as discussed in Cloyne et al. (2023). To obtain analyst forecast errors, we
merge with I/B/E/S based on the PERMNO-GVKEY link.

To be able to work with within-firm time series variation in some parts of our anal-
ysis, we perform a final step of cleaning to yield the streak sample. As in Ottonello and
Winberry (2020), we only keep growth rate streaks of 40 consecutive quarters, and
remove all other observations. This yields a sample of 5,332 unique growth streaks
for 5,061 unique companies. 271 companies have two sales growth rate streaks in the
data. The sample period is 1983Q3 until 2021Q4 and there are 396,722 firm-quarter
observations. To approximate a balanced panel, the long sample only consider firms
within the clean sample that have observations before 1985Q1 and after 2021Q1. This
leaves 661 unique firms.

Figure A.1 shows the number of firm-level observations per quarter for the differ-
ent samples. Despite differences in the number of observations, the skewness pattern
across samples is very similar, see Figure A.2. The business cycle pattern of cross-
sectional skewness is especially similar between the cleaned and the streak sample,
which are used in the main analysis.
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Figure A.1: Number of sales growth observations per quarter
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Note: The full sample of growth rates covers 1962Q1-2022Q3. The other samples cover 1983Q3-2021Q4.

Figure A.2: Kelley skewness for different samples
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Table A.1: Firm-level local projections – Summary statistics

Monetary Oil Credit Uncertainty Sentiment TFP News
# Streaks 4,120 5,332 2,813 5,115 5,125 4,829
# Firms 4,017 5,061 2,813 4,893 4,902 4,651
Avg. # Obs. 64 70 84 66 66 63
Avg. R2 0.33 0.29 0.25 0.26 0.32 0.31
Sign. IRFs (%) 77 80 83 78 82 80
QIRF

0.1 (%) -5.4 -14.3 -2.1 -5.0 -4.5 -5.4
QIRF

0.5 (%) -0.16 -0.14 -0.33 -0.30 -0.33 -0.39
QIRF

0.9 (%) 5.0 13.5 1.2 4.1 3.8 4.7

Note: The number of streaks can be larger than the number of unique firms. The average number of
time series observations is measured for impact effect regressions and rounded to the nearest integer.
The adjusted R2 values are averaged across horizons and firms. The share of significant IRFs is the rela-
tive frequency of statistically significant IRFs for the peak of the impulse response estimates, measured
using 90% confidence intervals based on Newey–West standard errors. Quantiles across firm-level IRFs
are averaged across horizons. IRFs for the credit shock are only estimated for firms existing during the
Great Financial Crisis.

D Additional empirical results

D.1 Skewness across firm-level (bottom-up) impulse responses

In the main text we have used measures of aggregate growth and cross-sectional
skewness as inputs to the local projections to study their impulse responses. Instead,
this section estimates impulse responses of firm-level sales growth rates to aggregate
shocks and then constructs the response of cross-sectional skewness and aggregate
sales growth bottom-up from the distribution of firm-level IRFs. The local projection
specification at the firm level is

gi,t+h = αi,h + βi,hshockt +
L

∑
ℓ=1

γ′
i,ℓ,tcontrolsi,t−ℓ + ei,t+h, (A.19)

where βi,h is the response of firm i’s year-on-year sales growth rate at horizon h to a
shock at horizon 0. All firm-level regressions control for lagged values of the shock and
lagged GDP, as well as sales growth at the firm and the 2-digit NAICS level. In addi-
tion, we include shock-specific controls: shadow rate and leverage (monetary shock),
GDP deflator (oil supply), excess bond premium (credit shock), Jurado et al. (2015)
financial uncertainty (uncertainty), ICE consumer sentiment, macroeconomic uncer-
tainty, and S&P500 stock prices (sentiment), and GDP per capita, labor productivity,
and S&P500 stock prices per capita (TFP news). All controls are included with two
lags. The only exception is a contemporaneous control for GDP growth in the credit
shock regression, mirroring the specification in Gilchrist and Zakrajšek (2012).23

23See Table A.2 for variable definitions.
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The summary statistics for the distribution of firm-level impulse response esti-
mates are reported in Table A.1. Varying sample periods across shocks and missing
values for firm-specific controls (in particular leverage for the monetary shock) imply
differences in sample sizes. The number of unique streaks is above 4,000 for all shocks
except credit. The sample for the credit shock is smaller since we only consider streaks
covering the Great Financial Crisis, which turns out to be crucial to identify the effects
of credit shocks using the Gilchrist and Zakrajšek (2012) specification. The number
of streaks can be larger than the number of unique firms in the sample since some
firms can have multiple streaks in the data, although this does not happen frequently.
The average time series is roughly 70 quarters long. The firm-level regressions have
average R2 values of at least 25% and over 77% of impulse response estimates have
statistically significant peak effects for each shock. The distribution of IRF estimates is
widely dispersed with negative (unweighted) mean estimates, reflecting the contrac-
tionary nature of the shocks, and large heterogeneity in terms of firm responses. These
distributions look very similar when only considering IRFs with significant peak ef-
fects (results not shown).

Based on the firm-level IRF estimates β̂i,h from equation (A.19), we construct the
response of skewness and aggregate sales growth from the bottom up. The aggregate
sales growth IRF is the size-weighted average of the firm IRFs: β̂

agg
h = ∑i ωβ,i β̂i,h,

where ωβ,i is the average real sales of firm i divided by the sum of average real sales
across firms. The response of cross-sectional skewness is estimated from the cross
section of firm IRFs: β̂ksk

h = ksk
(
B̂h

)
, where B̂h = {β̂i,h}i=1,...,N is the set of firm

IRF estimates at horizon h. Testing for procyclical skewness in this exercise is signifi-
cantly harder than when using a top-down skewness index since individual firm IRFs
are much more volatile than aggregate sales and the only source of procyclical skew-
ness in response to a properly identified aggregate shock are heterogeneous responses
across firms.

The results are shown in Figure A.3, where shaded areas are 90% confidence inter-
vals based on a simple bootstrap with 2000 replications.24 Following a contractionary
aggregate shock, cross-sectional skewness (solid blue) and aggregate sales growth

24The bootstrap procedure resamples from the set of impulse responses with replacement. This takes
the IRF estimates as given and does not consider the sampling uncertainty surrounding these estimates,
thus understating the width of the confidence intervals (Pagan, 1984). Using a parametric bootstrap
to estimate bottom-up statistics based on a distribution of firm-level IRFs across firms and bootstrap
samples would correct the confidence intervals but is infeasible because of the computational burden
involved. A proper estimation requires to run 1000 bootstrap replications for 5000 firms for 6 shocks,
resulting in 30 million regressions. In addition, the parametric bootstrap would reduce the effective
sample size even further due to the lag structure of the data-generating process, which is undesirable
given the already short time series samples for some firms.
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Figure A.3: Comovement of cross-sectional growth and skew after aggregate shocks
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Note: The figure shows the response of aggregate sales growth (β̂agg
h ; green dashed line) and cross-

sectional skewness (β̂ksk
h ; blue solid line) to different aggregate shocks. The blue shaded areas are 90%

confidence bands for the skewness response, based on a bootstrap with 2000 replications. Shock mag-
nitudes are normalized to be one standard deviation. The signs of the sentiment and the TFP shock are
reversed to be contractionary.
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(dashed black) show a closely correlated decline. This is especially true for the oil,
credit and uncertainty shocks. The correlations of skewness and growth following a
sentiment or TFP shock are also close but the evidence for a negative skewness re-
sponse is less clear. The monetary shock leads to a severe contraction in skewness but
only after eight quarters, with a positive resonse on impact. Sales growth declines
earlier and is recovering while skewness bottoms out. Without putting too much
emphasis on any individual impulse response estimate, the findings across the six
different shocks confirm that 1) cross-sectional skewness declines following contrac-
tionary aggregate shocks and 2) aggregate sales growth and cross-sectional skewness
are strongly correlated following aggregate shocks.

How does the response of large firms differ from the response of small firms? We
split the sample into two size groups (largest firms versus the rest) to study the im-
pulse response of skewness across large vs small firms and compute their contribution
to aggregate sales growth. Figure A.4 shows the IRFs for the largest 10% of firms (de-
fined by average real sales) and the IRFs for the bottom 90% of firms. The black dotted
line shows the contribution of large firms to the impulse response of aggregate sales
growth, and the black dashed line shows the contribution of small firms. By construc-
tion, the sum of the two lines equals the impulse response of aggregate sales growth
shown in Figure A.3. The red (blue) line shows the impulse response of skewness
across large (small) firms. The shaded areas are 90% confidence intervals.

The bottom-up skewness response of large firms is significantly negative across
shocks and in line with the impulse responses for the skewness index (Figure 6). The
response of the largest firms is more skewed than the response of the rest of the firms.
The differences in skewness can be large. For example, the minimum of the skewness
IRF in response to a one standard deviation sentiment shock is around -0.2 for the
largest firms but only -0.04 for the smaller firms. In response to an oil shock, large
firms’ skewness declines by over 0.3 points, while smaller firms’ skewness falls by 0.1
points at most. The differences are also large for the monetary and the TFP shock and
less pronounced for the credit and the uncertainty shock. In any case, the response
across large firms is not less skewed than the response of small firms.

Summarizing the results of this section so far, aggregate shocks induce procyclical
skewness through heterogeneous responses across firms. Aggregate shocks explain
most of the business cycle variation of cross-sectional skewness. The set of the largest
firms in the US economy also shows skewed responses to aggregate shocks, suggesting
that some large firms respond strongly to those shocks.
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Figure A.4: Large vs small firms: Cross-sectional skewness responses
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Note: The figure shows the responses of cross-sectional skewness (β̂ksk
h ; blue solid line for large and

light blue dashed for small) to different aggregate shocks, split by large and small firms. Large firms
are the top 10% of the sales distribution, which averages real sales over time for each firm. Small firms
are all other firms. The shaded areas are 90% confidence bands for the skewness responses, based on a
bootstrap with 2000 replications. Shock magnitudes are normalized to be one standard deviation. The
signs of the sentiment and the TFP shock are reversed to be contractionary
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D.2 Cross-Sectional Skewness v. Aggregate Shocks

D.2.1 Shock Series for IRFs

Monetary shock We use the Bu et al. (2021) shock series, which are constructed to
bridge periods of conventional and unconventional monetary policy. This is useful be-
cause the skewness series only starts in the mid-1980s while unconventional monetary
policy became an important policy tool from 2008 onwards. Being restricted to a 1985-
2008 sample period would make identification difficult, especially with quarterly data.
The shock is estimated with Fama-MacBeth regressions using changes in interest rates
at different maturities around FOMC announcements such that the second-stage co-
efficient estimates are the monetary shock series. In our local projection specification,
we include lags of real GDP and the GDP deflator (both as detrended log levels) as
well as the Wu and Xia (2016) shadow rate and the excess bond premium as controls.
The excess bond premium captures financial conditions and is a useful control for the
predictable component of the business cycle. We also include lags of the dependent
variable and the shock as controls.

Oil supply shock The oil supply shocks are identified following Baumeister and
Hamilton (2019), who use carefully selected priors for demand and supply elastici-
ties in the oil market (among priors for other coefficients) in a Bayesian VAR. Their
identification scheme allows them to relax some identifying assumptions previously
imposed in the literature, for example that oil supply does not respond on impact to
shocks to the oil price. Under the new identification strategy, the authors find oil sup-
ply shocks to be a more important determinant of historical oil price movements than
found in the previous literature. The shock series we use is the median of the posterior
distribution. We add lags of the shock, GDP, the GDP deflator, the crude petroleum
producer price index, and the dependent variable as controls.

Credit shock. The credit shock uses innovations in the excess bond premium (EBP)
following Gilchrist and Zakrajšek (2012). The EBP is constructed from corporate bond
spreads to proxy investor risk appetite and is orthogonal to the risk of corporate de-
fault. Gilchrist and Zakrajšek (2012) use a recursive identification strategy in a VAR
to study the effect of EBP innovations on macroeconomic variables. They assume that
indicators of economic activity do not respond to EBP shocks within the same quarter
while financial variables can respond immediately. We replicate their VAR, extract the
shock, and use it in a local projection controlling for lags of the shock and the depen-
dent variable, GDP, the GDP deflator, and the EBP.
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Uncertainty shock The identification of the uncertainty shock follows Ludvigson et
al. (2021), who use restrictions on the time series of the structural shocks to jointly
identify financial uncertainty, macroeconomic uncertainty, and output shocks. Given
the VAR residuals, the authors randomly draw many candidates for the time series
of the structural shocks and only retain those that satisfy restrictions motivated from
economic theory and narratives of historical events. For example, financial uncer-
tainty should be high in October 1987 (‘Black Monday’) and September 2008 (Lehman
collapse).25 The remaining shocks series can be used for set identification of the im-
pulse responses. The authors find that financial uncertainty shocks are a source of
business cycle fluctuations, while macroeconomic uncertainty is more likely to be an
endogenous response to output shocks. To obtain a single shock series for the financial
uncertainty shock, we use the ‘maxG’ solution, which jointly maximizes the inequali-
ties associated with a subset of the constraints. The controls are lags of the shock, GDP,
the GDP deflator, VXO, and the dependent variable.

Sentiment shock While the previous shocks are related to economic fundamentals or
financial conditions, business cycles may also be affected by fluctuations in consumer
sentiment that are unrelated to economic conditions. Lagerborg et al. (2023) show that
exogenous changes in consumer confidence can be recessionary. Their identification
strategy relies on mass shootings in the United States, which are widely reported in the
media and are shown to be predictors of downturns in sentiment. The authors show
that the number of fatalities in mass shooting events can be viewed as exogenous to the
state of the economy and used as a valid instrument to identify the effect of consumer
confidence shocks on the business cycle. The authors estimate impulse responses in
a proxy SVAR, and we extract the shock series from this system using the authors’
replication codes. Similar to Lagerborg et al. (2023), we include lags of the shock,
the University of Michigan Index of Consumer Expectations, real GDP, the Jurado
et al. (2015) 12-month macroeconomic uncertainty index, real stock prices, and the
dependent variable in the local projections.

TFP news shock News about future productivity can explain a significant share of
business cycle variation, as shown in Beaudry and Portier (2006). We use shocks fol-
lowing the identification strategy of Ben Zeev and Khan (2015), who impose medium-
run restrictions to identify news about investment-specific technology. Their shock
is chosen to maximize the explained variance in (the inverse of) the relative price of
investment in the medium term, while being orthogonal to both current TFP and the

25The idea behind the identification scheme is similar to the classic sign restrictions, except that the
restrictions are directly imposed on the time series of the structural shocks as opposed to the shape or
magnitude of the impulse response estimates.
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current relative price of investment. The authors find TFP news to account for a signif-
icant share of business cycle fluctuations. The impulse responses are estimated similar
to the local projections of Ramey (2016), controlling for lags of the shock, real GDP per
capita, real stock prices per capita, labor productivity, and the dependent variable.

D.2.2 Local projection specifications and robustness.

Table A.2 describes the construction of all data entering the local projections, including
the shocks. We use existing data or the authors’ replication codes for all shock series.
For the baseline specifications, cross-sectional skewness and aggregate sales growth
are computed using the streak sample as described in Appendix C. We confirm that
the results for the impulse responses of cross-sectional skewness to aggregate shocks
(Figure 6) are robust to several robustness checks: Using four lags instead of two,
including lagged values of aggregate sales growth as controls, or using the cleaned
sample instead of the streak sample to compute the skewness index. Results are not
shown here to conserve space, but all alternative specifications yield very similar re-
sults, sometimes so close that the different impulse responses are indistinguishable
from each other because they agree up to the third decimal.

Figure A.5: Comparison of different skewness measures.
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67



Table A.2: Data for local projections

Variable Transformation from raw data Data source
Real GDP Log level FRED (GDPC1)
GDP Deflator Log level FRED (GDPDEF)
Real oil price Quarterly average of monthly data, deflated FRED (WPU0561, GDPDEF)
GDP per capita Real GDP (‘rgdp’) per population (‘civpop’) Ramey (2016) TFP data
Labor productivity Real GDP (‘rgdp’) per hours worked

(‘tothours’)
Ramey (2016) TFP data

Shadow rate Quarterly average of monthly data Atlanta Fed*
Stock prices Shiller stock prices divided by GDP deflator Ramey (2016), FRED
Stock prices per capita Stock prices per population (‘civpop’) Ramey (2016)
VXO Quarterly average of daily data FRED (VXOCLS)
Uncertainty Index Log level of Jurado et al. (2015) index Lagerborg et al. (2023)
Consumer Expectations Log level Lagerborg et al. (2023)
Monetary shock Quarterly sum of monthly data Fed Board**
Oil shock Quarterly average of monthly data Baumeister***
Credit shock Quarterly average of monthly data Favara et al. (2016)†

Uncertainty shock Quarterly average of monthly ‘maxG’ shock Ludvigson et al. (2021)
Sentiment shock Quarterly average of monthly data Lagerborg et al. (2023)‡

TFP News Shock Level of Ben Zeev and Khan (2015) shock Ramey (2016) TFP data
Cross-sectional skewness Own construction based on streak sample –
Sales growth Own construction based on streak sample –

Note:
(*) Shadow rate: https://www.atlantafed.org/cqer/research/wu-xia-shadow-federal-funds-rate.
(**) Bu et al. (2021) monetary shocks: https://www.federalreserve.gov/econres/feds/

a-unified-measure-of-fed-monetary-policy-shocks.htm.
(***) Baumeister and Hamilton (2019) shocks: https://sites.google.com/site/cjsbaumeister/

datasets?authuser=0.
(†) Credit shock from eight-variable VAR of Gilchrist and Zakrajšek (2012), 1973Q1–2019Q4.
(‡) Sentiment shock from Lagerborg et al. (2023) proxy SVAR, 1965:1–2018:11. Instrument is number of
fatalities (≤7), excluding 2017 Las Vegas shooting.
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Figure 6: Skewness by firm size across different measures.
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