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Topic and Roadmap

This paper studies a transmission mechanism of aggregate shocks.

1. New Stylized Facts:
• Observe how the outcome distribution of firm growth rates shifts and changes

shape over the business cycle
• Establish heterogeneity: distribution shifts differently for large v. small firms

2. New Theory: Propose model of transmission mechanism:

aggregate
cost shock
ut ↑

−→
cross-sectional
distribution of
input shocks, ϵi,t

−→

skewed c-sec.
output distribution
of growth rates
ln

qi,t
qi,t−1

3. Empirics: Test model predictions

heterogeneous exposures (heterogeneous) market power
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Recap: Skewness

• Skewness measures compare the thickness of left tail to right tail
• More mass in the left than right tail ⇐⇒ negative skewness
• Kelly Skewness: skew[X] = [X]0.1+[X]0.9−2[X]0.5
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Recap: Literature Business Cycle Moments

1. µt mean growth rates are (obviously) pro-cyclical

2. σt growth rate and shock variances are counter-cyclical
• Seminal work on uncertainty as result and driver of business cycle (Bloom,

2009)
• Empirical evidence of negative correlation of µt and σt (Higson et al., 2002,

2004)
• Income risk increases in recessions (Guvenen et al., 2014)
• Aggregate shocks + het. exposures =⇒ increase in variance (Davis et al., 2025)

3. γt skewness is procyclical.
• Procyclical skew of sales growth rate (Salgado et al., 2025)
• Procyclical skew of employment growth (Ilut et al., 2018)

Our Paper: But why?
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Pro-Cyclical Skewness
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• Cross-sectional skewness, γt closely tracks aggregate real sales growth, µt

• Holds robustly across time and skewness measures
• Split the sample in ‘large’ and ‘small’ firms to learn more...

Robustness: Other skewness measures 4/42
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Procyclicality Among Size Groups

Small firms (bottom 90%): low-amplitude skewness

Large firms (top 10%): large swings in skewness
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Note: ‘Small’ refers to the bottom 90% in the Compustat sample; these firms are large on a global
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Robustness: Size cutoffs Robustness: Global Sample ex. U.S. 5/42
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Variance and Skewness

• Cross-sectional increases in outcome variance (∆σt) predict declines of
skewness (∆γt).

• This relationship is especially strong for large firms.

Table 1: Effects of Std. Dev. on Skewness

All Firms Top 10% Bottom 90%

β -1.137∗ -3.281∗∗∗ -1.788∗∗∗

(0.650) (0.711) (0.448)

Observations 150 146 146

Note: This table shows the effect of a one-unit increase in the cross-sectional standard deviation of
sales growth on skewness of firm-level sales growth. Robust (HAC) standard errors in parentheses.
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Stylized Facts Summary

We establish following facts empirically:

Regime / Metric Skewness
Small Firms Large Firms

Recession − −−
Expansion + ++

Regression ∆γt on ∆σt 0 > βsmall > βlarge

Table 2: Skewness Patterns by Firm Size and Regime

New: size gradient

New: relating skewness to variance
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Strategy

1. Show that aggregate shocks (ut) + idiosyncratic exposures (λi) imply
heterogeneous input shocks (ϵi,t) to cost/productivity at the firm level

⇒ Countercyclical variance σ2
t ≡ var(ϵi,t), if expansions have ut ≈ 0 and

recessions have ut ≪ 0.

2. Show that heterogeneous input shocks lead to skewed output growth rates
which...

a. vary pro-cyclically (corr(γt, µt) > 0) if we have counter-cyclical variance
(corr(σt, µt) < 0), and

b. vary with larger amplitude if firms have a higher market power index, α,

given some (realistic) sufficient conditions on inverse demand, p(q).
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1. Aggregate Shocks, Heterogeneous Exposures and
Countercyclical Variance
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Motivation for Countercyclical Variances

Why would there be a counter-cyclical variance?

• Idea (Davis et al., 2025): Cross sectional variance comes from heterogeneous
exposures to aggregate shocks, ut

• u2
t gets large =⇒ some firms profit, others suffer =⇒ large variance

Formally...

• Unit measure of firms i ∈ [0, 1] with shocks ϵi,t.

• Aggregate risk factors ul,t with l = 1, ..., L
• Want to show: V(ϵi,t | recession) > V(ϵi,t | expansion)
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Shock-Exposure Structure

Suppose, cost-shocks of firms can be written as:

ϵi,t = ei,t +
L∑

l=1

λ̃i,lul,t = ei,t + λT
i ut + λ̄Tut

• ei,t: i.i.d. idiosyncratic shock.

• ut: Vector of aggregate factors

• λi,l: centered shock exposures, unit variance (w.l.o.g.).

• λ̄ ≤ 0: exposure w/ negative mean (implies that ut < 0 drives up costs;
recession interpretation)

12/42



Cross-Sectional Variance

Let factor l become large: |ul,t| ≫ 0, then:

Vt(ϵi,t) = V(ei,t + λT
i ut + λ̄Tut | ut) ∝ u2

l,t

• Large aggregate shocks ⇒ high cross-sectional variance.
• Assume following pattern:

Recessions ∼ ut ≪ 0: thus variance ↑,

Expansions ∼ ut ≈ 0: thus variance is small in normal times.

• Pattern is consistent with ut following a left-skewed time-series distribution
which regularly realizes at small values and occasionally in the disaster-tail.

• Result: countercyclical shock-variance

Next: How does this pattern drive higher moments? 13/42
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2. Countercyclical Variance, Procyclically Skewed
Growth Rates and Market Power

µbust 0 µboom

(b) Idiosyncratic Shock Exposure

Recession
Boom

µbust 0 µboom

(c) Skewed Outcome Distribution

Recession
Boom
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Growth Rates

Let q be output quantity and q̂ ≡ lnq. Firm time series growth rates are

q̂t − q̂t−1.

Static point of departure: First derive conditions under which, cross-sectionally,
log output is skewed:

skew[q̂] < 0.

The distribution of q̂ refers to cross-section of firms that are structurally iden-
tical (marginal cost, demand curve...), but receive heterogeneous shocks.
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General Setup

Consider a monopolistic firm optimizing over output, q.

Cost Function

• Convex costs: c(q; ϵ) = qηeϵ, η > 1

• Stochastic cost shifter: ϵ ∼ (0, σ2), symmetric, zero-mean, finite variance

Demand

• General inverse demand: p(q),
• Local regularity assumptions: strictly decreasing, log-concave, thrice

differentiable

• Firm is price taker if p(q) = p̄ = const.

(alternative with linear cost

also works)

focus on demand structure
16/42
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Price Taker’s Problem

Optimization Problem
max
q≥0

qp̄ − c(q; ϵ)

First Order Condition
c′(qpt; ϵ) = p̄,

which implies marginal cost pricing.

Equilibrium log-output (q̂pt) is given by

q̂pt =
ln p̄ − ln η − ϵ

η − 1

and is linear in ϵ.
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Monopolist’s Problem

Optimization Problem
max
q≥0

qp(q)− c(q; ϵ)

First Order Condition

ηqη−1eϵ = c′(q) = p(q)(1 − |Ep(q)|)︸ ︷︷ ︸
≡mr(q)

,

where (Ef )(x) ≡ f ′(x)
f(x) x is the elasticity operator and mr is marginal revenue.

Equilibrium Markup is given by Lerner-condition:

µ(q) = 1
1 − |Ep(q)| .
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Solution of Firm Problem

Lemma: Solution of Firm Problem
The solution, of the monopolist’s problem is unique, interior (positive) and
implicitly given as the solution to the first-order condition equating marginal
cost to marginal revenue:

c′(q; ϵ) = p(q) (1 + Ep(q))︸ ︷︷ ︸
≡mr(q) (marginal revenue)

q̂=ln q⇐⇒ ln ◦ mr
(
eq̂)− [ln η + (η − 1)q̂] = ϵ.

The optimal log-output policy, Q⋆(ϵ), is a decreasing function of ϵ.

How does Q⋆( · ) affect skewness of q̂?
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Skewness and Concave FoCs
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Definition ‘relative concavity’ Lemma skewness & transformations 20/42

• symmetric shock distribution

• concave Q⋆ yields negative skew in
q̂

• ‘more’ concave Q⋆ yields stronger
negative skew in q̂

• linear Q⋆ yields symmetric dist. of q̂
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Unskewed Price Taker

Because the Q⋆ is linear for the price taker:

Result: Price Taker
Log output q̂pt and time-series growth rates q̂pt,t − q̂pt,t−1 of the price taking
firm are unskewed:

skew[q̂pt] = skew[q̂pt,t − q̂pt,t−1] = 0

• For the monopolist, skew[q̂] depends on concavity of Q⋆

• So, when is Q⋆ concave?

Now: Single-out properties of p that generate concavity in Q⋆
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Examine Q⋆ with properties of inverse demand, p

Property 1: MSLD
We say that Marshall’s Second Law of Demand (MSLD) holds if for all q ∈ D, the
elasticity of inverse demand is increasing: | ∂

∂qEp(q)| > 0.

⇔ The absolute price elasticity of demand increases as the price rises.
• Interpretation: Consumers become increasingly sensitive to price changes

as goods become more expensive.

• Implication: Firms with lower marginal costs charge higher markups due to
higher elasticity at higher prices.
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msld implies that average elasticity of marginal revenues is decreasing

∂

∂q

∫ q

0

∣∣Emr(q)
∣∣ dq > 0.

Melitz (2018) defines a slightly stronger property, demanding that this holds true
at the margin, too.

Property 2: MSLD’
We say that Marshall’s Strong Second Law of Demand (MSLD’) holds if for all
q ∈ D, the elasticity of marginal revenue is increasing: | ∂

∂qEmr(q)| > 0. We say
it only holds weakly, if the inequality is weak.
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Properties of p and concavity

Lemma: MSLD’ implies Concave Q⋆

Consider the solution of the firm problem Q⋆(ϵ) (log-output as a function of the
shock). Then

Q⋆ is concave ⇐⇒ The Strong Second Law (MLSD’) holds.

Moreover, if Q⋆ is concave, then q̂ = Q⋆(ϵ) is negatively skewed, i.e. skew[q̂] < 0.
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Result: Monopolist v. Price Taker Skewness
Monopolist’s output is more left-skewed output than price taker’s under
MSLD’: Let q̂ = Q∗(ϵ) be log-output of a monopolistic firm, q̂pt be that of the
price-taker, and suppose MSLD’ holds strictly. Then,

skew[q̂] < skew[q̂pt] = 0.

Nice, if we assume that ‘small’ firms are all price takers; but we would like to
differentiate firms better.

Next: Introduce market power parameter α ∈ [0, 1] to make binary compari-
son (monopolist (α = 1) v. price taker (α = 0)) continuous!
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Continuous Market Power

To parameterize market power, parameterize inverse demand as

p(q) =
△
p(q)αp̄1−α, p̄ = const.

Elasticity of inverse demand is then,

|Ep(q)| = α|E
△
p(q)|

no market power ⇐⇒ α = 0 ⇐⇒ |Ep(q)| = 0 ⇐⇒ infinitely elastic
demand
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Continuous Market Power

With market power parametrized by α ∈ [0, 1] (firm with market power α has
output q̂α), can we generate Monotone Skewness?

Property 3: Monotone Skewness
We say Monotone Skewness holds if the skewness index is decreasing in
market power. That is, skew[q̂α] ≤ 0 is decreasing in α, with skew[q̂1] equaling
monopolist and skew[q̂0] = 0 equaling price-taker output, respectively.

The next (and final) property will guarantee Monotone Skewness.
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Pass-Through Rates

The pass-through, τ , is defined as the share of a cost increase that is passed on
to customers in equilibrium.

Formally, τ equals one plus the elasticity of the mark-up with respect to the cost
shifter c̄ ≡ eϵ.

Property 4: IPT
Let the pass-through be the share of a cost increase that is passed on to
customers in equilibrium given by τ(c̄) = 1+ d log µ

d log c̄ . An inverse demand function
p features increasing pass-through (IPT) if ∂

∂c̄τ(c̄) ≥ 0.

Interpretation IPT: higher-cost firms pass on larger shares of cost increases,
lower cost firms absorb some by dropping mark-ups.
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Relationship of IPT and Monotone Skewness

Result: Sufficient Conditions for Monotone Skewness
Increasing pass-through rates (IPT) and Marshall’s second law of demand
(MSLD) are sufficient conditions to guarantee that skewness of log-output is
negative and decreasing in market power:

IPT ∧ MSLD =⇒ MSLD′ and

IPT ∧ MSLD =⇒ Monotone Skewness
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Recap & Outlook

• We thus have a theory which predicts that log-output of larger firms is more
left-skewed than of smaller firms.

• What does it say about skewness of time-series growth rates?
• Does it imply pro-cyclically skewed growth rates?

To this end, we take a look at the role of cross-sectional shock variance, σ2.

Properties in the literature 30/42
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Variance and Skewness

Recall: Left-skew increases in ϕ for s-concave g and symm. Y: ∂
∂ϕskew[g(ϕY)] ≤ 0
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• Small variance =⇒ little left-skew

• Large variance =⇒ extreme
left-skew
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Business Cycle and Time Series Growth Rates

• Larger shock variance =⇒ more negative left-skew of q̂
• Suppose, the shock variance is countercyclical with

σt =

σrec for even t (recessions)

σboo for odd t (boom)

with σrec > σboo.

• Then, for any α ∈ (0, 1], skewness of time-series growth rates is:

skew[q̂t − q̂t−1] =

skew[q̂recession − q̂boom] for even t

skew[q̂boom − q̂recession] for odd t

slightly negatively skewed strongly negatively skewed
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Main Result: Market Power and Cyclicality of Growth-Skewness and Dispersion
Parametrize skew[q̂α,t − q̂α,t−1], the skewness of time-series growth rates, by
market power, α ∈ (0, 1]. Suppose MSLD, IPT and counter-cyclical dispersion
(. . . , σboo, σrec, σboo, . . .) hold.

Then, the time-series of growth-rate skewness indexes for q̂α,t − q̂α,t−1 is
alternating pro-cyclically: (. . . , skew[q̂α,boo − q̂α,rec], skew[q̂α,rec − q̂α,boo], . . . )

with

skew[q̂α,rec − q̂α,boo]︸ ︷︷ ︸
recession

< 0 < skew[q̂α,boo − q̂α,rec]︸ ︷︷ ︸
expansion

.

Additionally, the amplitude of the skewness sequence is strictly increasing in
market power:

∂

∂α

∣∣skew[q̂α,t − q̂α,t−1]
∣∣ > 0.
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Theory Take-Away

1. Assume that size ≡ market power.

2. Assume that IPT, MSLD holds true.

3. Assume heterogeneous exposures to aggregate shocks

Then, the model rationalizes all stylized facts.
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Simulation Exercise
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Can we use the Theory to Simulate Skewness?

• Theory is clear, but pertains to a stylized environment
• Real world is messy: persistent processes, jumps, etc...
• Shock variances do not strictly oscillate!

• But theory delivers a recipe how to simulate the stylized facts:
• Stick in some more realistic process for ut (use an AR(2) with jumps)
• Let firm exposures to ut be normally distributed ⇒ Et[ϵi,t] ∝ ut and Vt[ϵi,t] ∝ u2

t
• Use two concave, decreasing mappings to model Q⋆( · ;α), α ∈ {αlow, αhi}

• Try it! Play with free parameters to roughly match scale of skewness index
and mean over time

Go to simulation results 35/42
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An AR(2) with Pareto jumps for ut
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An AR(2) with Pareto jumps for ut
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Time

0

Aggregate shock ut

Simulated: Aggregate Shock Path, ut
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Concave, decreasing mappings for Q⋆( · ;α), α ∈ {αlow, αhi}

ε

Q
?
(ε

)

Firm Policy
Policy w/ higher market power
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Simulated co-movement between µt and γt
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Simulated co-movement between γt and ∆σ2
t — for each α!
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Simulated co-movement between γt and ∆σ2
t — for each α!
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Simulated co-movement between γt and ∆σ2
t — for each α!
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Empirics
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The theoretical model implies following empirical hypotheses:

H0: Cross-sectional changes in output variance are a strong predictor of cross-
sectional skewness, and more so for large firms. Skewness is pro-cyclical, and
especially for large firms. Variance is counter-cyclical.

H1: Aggregate shocks (ut ̸= 0) cause aggregate dip in skewness of growth
rates. The dip is more pronounced for largest firms.

H2: In a decomposition of growth rates into aggregate and idiosyncratic
shocks, skewness of aggregate shock explains skewness of growth rates well.

These are the stylized facts.
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off-the-shelf shocks.

Go to analysis
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sectional skewness, and more so for large firms. Skewness is pro-cyclical, and
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H1: Aggregate shocks (ut ̸= 0) cause aggregate dip in skewness of growth
rates. The dip is more pronounced for largest firms.

H2: In a decomposition of growth rates into aggregate and idiosyncratic
shocks, skewness of aggregate shock explains skewness of growth rates well.

In a PCA, an aggregate component explains about 75% of skewness in sales
growth. Go to analysis
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H3: Split firms in high-(absolute-)exposure and low-exposure samples. Skew-
ness of high-exposure firms reacts more strongly than that of low-exposure
firms in response to an exogenous aggregate shock.

H4: Slice the firm sample by industry (not size). Then there is a strong positive
relationship between the time-series variance of the skewness index and the
average HHI of the industry.

H5: The stylized facts hold in a disjoint sample of listed European firms.

We confirm this using risk factors and exposures to COVID shocks from Davis
et al. (2025). Go to analysis
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relationship between the time-series variance of the skewness index and the
average HHI of the industry.

H5: The stylized facts hold in a disjoint sample of listed European firms.

Examine and confirm using NAICS classifications. Go to analysis
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H3: Split firms in high-(absolute-)exposure and low-exposure samples. Skew-
ness of high-exposure firms reacts more strongly than that of low-exposure
firms in response to an exogenous aggregate shock.

H4: Slice the firm sample by industry (not size). Then there is a strong positive
relationship between the time-series variance of the skewness index and the
average HHI of the industry.

H5: The stylized facts hold in a disjoint sample of listed European firms.

We reproduce cyclicality and size related stylized facts in Compustat Global.
Go to analysis
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Conclusion
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• Theoretical insight: aggregate shocks are all you need! Can generate
cross-sectional moments of heterogeneous growth:
• aggregate shock + heterogeneous exposures ⇒ countercyclical variance
• countercyclical variance + market power ⇒ procyclical, monotone skewness

• Empirical insight: new pattern of business cycle statistics (monotone
skewness)
• Patterns are in line with market power explanation
• Cross-sectional left-skewness can be created by aggregate ‘disaster’ shocks
• But different skewness in two cross-sections ≠⇒ two different aggregate

shocks or even different exposures!

⇒ Skewness of realized growth distributions can be driven by shock exposure
or market power

⇒ Also: concave policy of monopolist implies disproportionate reactions to
negative shocks (be careful when using growth as a metric to hand out
subsidies during crises!)
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shocks or even different exposures!

⇒ Skewness of realized growth distributions can be driven by shock exposure
or market power

⇒ Also: concave policy of monopolist implies disproportionate reactions to
negative shocks (be careful when using growth as a metric to hand out
subsidies during crises!)

42/42



• Theoretical insight: aggregate shocks are all you need! Can generate
cross-sectional moments of heterogeneous growth:
• aggregate shock + heterogeneous exposures ⇒ countercyclical variance
• countercyclical variance + market power ⇒ procyclical, monotone skewness

• Empirical insight: new pattern of business cycle statistics (monotone
skewness)
• Patterns are in line with market power explanation
• Cross-sectional left-skewness can be created by aggregate ‘disaster’ shocks
• But different skewness in two cross-sections ≠⇒ two different aggregate
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Thank you!
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What does “more concave” mean?

Formal definition due to Palmer (2003):

Definition: Relative Concavity
Consider two strictly monotone functions f and g. f is concave relative to g if
there exists a strictly increasing, strictly concave function s such that f = s ◦ g.
We write f ≺ g.

Go to concavity-figure 42/42



Skewness of Transformed Random Variables

What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs
Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < ∞. Let ϕ > 0 be constant, and g(·) be a concave and increasing function
over the support of Y (resp. ϕY). Then:

1. It holds that skew[g(Y)] ≤ 0, and strictly if g is strictly concave.

2. If h is concave relative to g, i.e. h ≺ g, then skew[h(Y)] < skew[g(Y)].
3. Skewness decreases for larger ϕ:

∂

∂ϕ
skew[g(ϕY)] < 0,

which also holds strictly if g is strictly concave.

Go to concavity figure Go to variance figure 42/42
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What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs
Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < ∞. Let ϕ > 0 be constant, and g(·) be a concave and increasing function
over the support of Y (resp. ϕY). Then:
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which also holds strictly if g is strictly concave.

skewed q̂ ⇐⇒ concave Q⋆
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Skewness of Transformed Random Variables

What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs
Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < ∞. Let ϕ > 0 be constant, and g(·) be a concave and increasing function
over the support of Y (resp. ϕY). Then:

1. It holds that skew[g(Y)] ≤ 0, and strictly if g is strictly concave.

2. If h is concave relative to g, i.e. h ≺ g, then skew[h(Y)] < skew[g(Y)].

3. Skewness decreases for larger ϕ:

∂

∂ϕ
skew[g(ϕY)] < 0,

which also holds strictly if g is strictly concave.
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What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs
Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < ∞. Let ϕ > 0 be constant, and g(·) be a concave and increasing function
over the support of Y (resp. ϕY). Then:

1. It holds that skew[g(Y)] ≤ 0, and strictly if g is strictly concave.

2. If h is concave relative to g, i.e. h ≺ g, then skew[h(Y)] < skew[g(Y)].

3. Skewness decreases for larger ϕ:

∂

∂ϕ
skew[g(ϕY)] < 0,

which also holds strictly if g is strictly concave.

more left-skew ⇐⇒ more concave Q⋆ ⇐⇒ more market power
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Skewness of Transformed Random Variables

What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs
Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < ∞. Let ϕ > 0 be constant, and g(·) be a concave and increasing function
over the support of Y (resp. ϕY). Then:

1. It holds that skew[g(Y)] ≤ 0, and strictly if g is strictly concave.

2. If h is concave relative to g, i.e. h ≺ g, then skew[h(Y)] < skew[g(Y)].
3. Skewness decreases for larger ϕ:

∂

∂ϕ
skew[g(ϕY)] < 0,

which also holds strictly if g is strictly concave.

variance affects skewness! (later)Go to concavity figure Go to variance figure 42/42



Theor. Properties vs. Empirical Literature

• MSLD is prevalent e.g. in trade literature (Krugman (1979)), popular
aggregators satisfy MSLD (Kimball, 1995) (CES does not!), recent attention in
e.g. Matsuyama and Ushchev (2022)

• There is empirical support for MSLD and IPT (Berman et al., 2012; Baqaee
et al., 2024; Amiti et al., 2019)

• There is also strong empirical support that larger firms have more market
power (De Loecker and Warzynski, 2012; Autor et al., 2020)

• Evidence that input shock variance is countercyclical: Bloom (2009); Davis
et al. (2025) plus previously cited.
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Robustness: Skewness measures
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Robustness: Procyclical skewness for increasing size cutoffs

γt,p = αp + βpµt + ϵt (1)
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Stylized Facts Compustat (Compustat Global)

Figure 4: Size-dependent skewness (ex. US)
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(b) Skewness–growth regression

Slope (skew ∼ aggregate)
95% CI

Note: Size groups are defined based on average real sales over previous three years. The sample
is Compustat Global which excludes US-listed firms.
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Stylized Facts Compustat (Paper Figure)

Figure 5: Size-dependent skewness (U.S. only)
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(b) Skewness–growth regression

Slope (skew ∼ aggregate)
95% CI

Note: Size groups are defined based on average real sales over previous three years. The standard
deviation of Kelley skewness for large firms is about 0.23 — more than twice the corresponding
value of 0.11 for small firms.

Back to hypotheses
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Compustat Data

Dataset Overview:

• Compustat: US public firms, quarterly frequency, over 35 years.
• All firms are large by global standards (avg. assets of USD 2.8bn)
• Key variable: Real sales si,t; growth defined as gi,t = ln(si,t)− ln(si,t−4).
• Aggregate sales growth (size-weighted):

gt =

∑
i gi,tsi,t−4∑

i si,t−4

Firm Size Characteristics:

• Firms in Compustat sample are large relative to the universe of US firms.
• Largest 10% of firms account for approximately 70% of total sales.
• Top 30% of firms represent over 90% of total sales.

Go to IRFs Go to PCA
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Firm Size Characteristics:

• Firms in Compustat sample are large relative to the universe of US firms.
• Largest 10% of firms account for approximately 70% of total sales.
• Top 30% of firms represent over 90% of total sales.
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Impulse Response Findings

Aggregate shocks studied:

• Monetary, oil supply, credit, uncertainty, sentiment, TFP shocks.

Key results:

• All shocks induce significant declines in skewness (0.02–0.06 points).

• Strong correlation between impulse responses of skewness and aggregate
sales growth (0.89-0.98).

• Large firms exhibit more pronounced skewness response than smaller firms.

data description 42/42
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Skewness and average sales growth response

• Five out of six shocks induce negative skewness, all induce co-movement
• Takeaway: Co-movement of µt and γt holds for structural shocks
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Skewness IRFs according to size groups

• Five out of six shocks induce more skewness for large firms
• Takeaway: Likely that skewness response a result from skewed responses of

large firms
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Aggregate vs. Idiosyncratic Components

Decomposition approach via PCA:

gi,t = δi + ai,t + ui,t, ai,t = β′
iFt, gi,t ≡ ∆ log qi,t,

where βi are estimated factor loadings and Ft is an aggregate factor.

Results:

• Aggregate component (ai,t) strongly correlated with skewness in sales
growth.

• Aggregate component explains 75% of skewness variation; idiosyncratic
component (δi) is less significant (2̃5%).
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Factor Decomposition Results

Key observations from PCA:

• Single aggregate factor accounts for 79% skewness variation.

• Aggregate factors explain relatively little ( 30%) of individual firm-level
variation.

• Thus, skewness is driven by heterogeneous firm-level responses to common
shocks rather than purely idiosyncratic variation.

42/42



Decomposition of Skewness

• Skewness in the idiosyncratic component adds little beyond the procyclical
pattern in the common component.

• The sum of common and idiosyncratic contributions (green) closely matches
the overall skewness measure (blue)
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COVID risk exposures and skewness Davis et al. (2025)

• Risk exposures λi to COVID shock be Davis et al. (2025)
• Split sample: i ∈ H if |λi| is above median absolute exposure, |λi|0.5.

Otherwise, i ∈ L
• Prediction: growth rate skewness of γt(H) < γt(L) on impact, γt(H) > γt(L)

during recovery.
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COVID risk exposures and skewness Davis et al. (2025)
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COVID risk exposures and skewness Davis et al. (2025)

• Risk exposures λi to COVID shock be Davis et al. (2025)
• Split sample: i ∈ H if |λi| is above median absolute exposure, |λi|0.5.

Otherwise, i ∈ L
• Prediction: growth rate skewness of γt(H) < γt(L) on impact, γt(H) > γt(L)
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Skewness and Concentration

• If market power is the driving force, then skewness within sectors with large
HHI should have larger amplitude, hence time-series variance

• Strongest correlation between amplitude of skewness fluctuations and HHI
concentration for coarsest sectors

• Constraining firms to be more equal (finer sectors) mutes relationship
(explanation: smaller cross-sections and measurement error)
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