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3. Empirics: Test model predictions
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. . —~————————————————> o a - 7} ’,‘_)
3. v; skewness is procyclical Our Paper: But why

« Procyclical skew of sales growth rate (Salgado et al., 2025)
+ Procyclical skew of employment growth (Ilut et al., 2018)
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« Cross-sectional skewness, ; closely tracks aggregate real sales growth, ;.
+ Holds robustly across time and skewness measures
« Split the sample in ‘large’ and ‘small’ firms to learn more...
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Procyclicality Among Size Groups

Small firms (bottom 90%): low-amplitude skewness
small amplitude
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Procyclicality Among Size Groups

Small firms (bottom 90%): low-amplitude skewness

Large firms (top 10%): large swings in skewness large amplitude
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Variance and Skewness

« Cross-sectional increases in outcome variance (Aot) predict declines of
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- This relationship is especially strong for large firms.
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Stylized Facts Summary

We establish following facts empirically:
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Stylized Facts Summary

We establish following facts empirically:
New: size gradient

\

Regime / Metric Sﬂewness

Small Firms | Large Firms
Recession — ¢
Expansion + ++
Regression A~; on Aoy 0 > Bsmall > Plarge

Table 2: Skewness Patterns by Firm Size and Regime

New: relating skewness to variance
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1. Show that aggregate shocks (u¢) + idiosyncratic exposures ()\;) imply
heterogeneous input shocks (¢; ;) to cost/productivity at the firm level

= Countercyclical variance o7 = var(e;;), if expansions have u; ~ o0 and
recessions have u; < 0.

2. Show that heterogeneous input shocks lead to skewed output growth rates
which...

a. vary pro-cyclically (corr(~t, u1¢) > 0) if we have counter-cyclical variance
(corr(ot, ut) < 0), and
b. vary with larger amplitude if firms have a higher market power index, o,

given some (realistic) sufficient conditions on inverse demand, p(q).
8/12
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1. Aggregate Shocks, Heterogeneous Exposures and
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Motivation for Countercyclical Variances

Why would there be a counter-cyclical variance?

- Idea (Davis et al., 2025): Cross sectional variance comes from heterogeneous
exposures to aggregate shocks, u;

* u? gets large — some firms profit, others suffer — large variance

11/42



Motivation for Countercyclical Variances

Why would there be a counter-cyclical variance?

- Idea (Davis et al., 2025): Cross sectional variance comes from heterogeneous
exposures to aggregate shocks, u;

* u? gets large — some firms profit, others suffer — large variance

Formally...

+ Unit measure of firms i € [0, 1] with shocks ¢;.
« Aggregate risk factors u;; with [ =1, ..., L

+ Want to show: V(¢;; | recession) > V(e;; | expansion)
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Shock-Exposure Structure

Suppose, cost-shocks of firms can be written as:

L
5 T 3T
€it =€t T Z AUt = €t + Ajle + A Ut
[=1

* e; Ii.d. idiosyncratic shock.
* uq: Vector of aggregate factors
* )i : centered shock exposures, unit variance (w.l.o.g.).

+ X < 0: exposure w/ negative mean (implies that u; < o drives up costs;
recession interpretation)
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- Large aggregate shocks = high cross-sectional variance.
« Assume following pattern:

Recessions ~ u; < 0: thus variance 1,
Expansions ~ u; ~ O: thus variance is small in normal times.

« Pattern is consistent with u; following a left-skewed time-series distribution
which regularly realizes at small values and occasionally in the disaster-tail.
+ Result: countercyclical shock-variance

Next: How does this pattern drive higher moments? 13/42



2. Countercyclical Variance, Procyclically Skewed
Growth Rates and Market Power

(b) Idiosyncratic Shock Exposure (c) Skewed Outcome Distribution

= = Recession = = Recession

Boom
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Growth Rates

Let g be output quantity and g = In q. Firm time series growth rates are
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Growth Rates

Let g be output quantity and g = In q. Firm time series growth rates are

qt — Qt—.

Static point of departure: First derive conditions under which, cross-sectionally,
log output is skewed:
skew[q] < O.

The distribution of g refers to cross-section of firms that are structurally iden-
tical (marginal cost, demand curve...), but receive heterogeneous shocks.

15/42
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Consider a monopolistic firm optimizing over output, g.

Cost Function

« Convex costs: ¢(q;e) =g"e, n>1

+ Stochastic cost shiftei: ¢ NOKaj), symmetric, zero-mean, finite variance

Demand (alternative with linear cost

- General inverse demand: p(g),21s0 works)

« Local regularity assumptions: strictly decreasing, log-concave, thrice
differentiable

- Firm is price taker if p(q)

focus on demand structure
16/42



Price Taker’'s Problem

Optimization Problem
max gp — ¢(q; ¢)

q>0
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Optimization Problem
maxqp — ¢(q; €)

q=0

First Order Condition

c(qpt;i €) = b,

which implies marginal cost pricing.
Equilibrium log-output (q,:) is given by

—~ Inp—Inn—ce¢
Pr=

and is linear in .
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First Order Condition

nq" et = c'(q) = p(q)(1 — 1Ep(q)]),
=mr(q)

where (£f)(x) = ! /(()’(‘))x is the elasticity operator and mr is marginal revenue.

—

Equilibrium Markup is given by Lerner-condition:

1

M9 = ey
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Solution of Firm Problem

Lemma; Solution of Firm Problem

The solution, of the monopolist’s problem is unique, interior (positive) and
implicitly given as the solution to the first-order condition equating marginal
cost to marginal revenue:

2% 1o mr(e?) —[Inn+ (n—1)4] =«

c(g;¢) = p(q)(1+Ep(q))

=mr(q) (marginal revenue)
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The solution, of the monopolist’s problem is unique, interior (positive) and
implicitly given as the solution to the first-order condition equating marginal
cost to marginal revenue:

2% 1o mr(e?) —[Inn+ (n—1)4] =«

c(g;¢) = p(q)(1+Ep(q))

=mr(q) (marginal revenue)

The optimal log-output policy, Q*(¢), is a decreasing function of e.

How does Q*( - ) affect skewness of §?
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Skewness and Concave FoCs

first-order condition, Q" (¢)
log-output (Inq)

- concave Q* yields negative skew in
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Skewness and Concave FoCs

first-order condition, Q" (¢)
log-output (Inq)

concave Q* yields negative skew in
q
‘more’ concave Q* yields stronger

negative skew in g

price taker
FOC!

Shock to cost ()

linear Q* yields symmetric dist. of §
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Unskewed Price Taker

Because the Q* is linear for the price taker:

Result: Price Taker
Log output §,: and time-series growth rates §p: — Gpt r—1 Of the price taking
firm are unskewed:

skew[qpt] = skew[qptt — Gptt—1] = O
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Unskewed Price Taker

Because the Q* is linear for the price taker:

Result: Price Taker
Log output §,: and time-series growth rates §p: — Gpt r—1 Of the price taking
firm are unskewed:

skew[Gpt] = skew([Gpt,t — Gpt,t—1] = O

« For the monopolist, skew[g] depends on concavity of Q*
* So, when is Q* concave?

Now: Single-out properties of p that generate concavity in Q*

21/42



Examine Q* with properties of inverse demand, p

Property 1: MSLD

We say that Marshall’'s Second Law of Demand (MSLD) holds if for all g € D, the
elasticity of inverse demand is increasing: \(%Ep(q)] > 0.
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Examine Q* with properties of inverse demand, p

Property 1: MSLD
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MsLD implies that average elasticity of marginal revenues is decreasing

0 q
8q/o ‘Emr(q)|dq > 0.

23/42



MsLD implies that average elasticity of marginal revenues is decreasing

0 q
8q/o ‘Emr(q)|dq > 0.

Melitz (2018) defines a slightly stronger property, demanding that this holds true
at the margin, too.

23/42



MsLD implies that average elasticity of marginal revenues is decreasing

) q
8q/o ‘5mr(q)}dq > 0.

Melitz (2018) defines a slightly stronger property, demanding that this holds true
at the margin, too.

Property 2: MSLD’

We say that Marshall’s Strong Second Law of Demand (MSLD’) holds if for all
g € D, the elasticity of marginal revenue is increasing: ](%Smr(q)\ > 0. We say
it only holds weakly, if the inequality is weak.
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Properties of p and concavity

Lemma: MSLD’ implies Concave Q*

Consider the solution of the firm problem Q*(¢) (log-output as a function of the
shock). Then

Q* is concave <= The Strong Second Law (MLSD’) holds.
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Properties of p and concavity

Lemma: MSLD’ implies Concave Q*

Consider the solution of the firm problem Q*(¢) (log-output as a function of the
shock). Then

Q* is concave <= The Strong Second Law (MLSD’) holds.

Moreover, if Q* is concave, then g = Q*(¢) is negatively skewed, i.e. skew[g] < O.
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Result: Monopolist v. Price Taker Skewness

Monopolist’s output is more left-skewed output than price taker’s under
MSLD’: Let § = Q*(¢) be log-output of a monopolistic firm, §,; be that of the
price-taker, and suppose MSLD’ holds strictly. Then,

skew[q] < skew[Gpt] = O.
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Result: Monopolist v. Price Taker Skewness

Monopolist’s output is more left-skewed output than price taker’s under
MSLD’: Let § = Q*(¢) be log-output of a monopolistic firm, §,; be that of the
price-taker, and suppose MSLD’ holds strictly. Then,

skew[q] < skew[Gpt] = O.

Nice, if we assume that ‘small’ firms are all price takers; but we would like to
differentiate firms better.

Next: Introduce market power parameter o € [0, 1] to make binary compari-
son (monopolist (o = 1) v. price taker (o = 0)) continuous!
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Continuous Market Power

To parameterize market power, parameterize inverse demand as

4 axl—o =
p(q) = p(q)*p"~*, p = const.
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Continuous Market Power

To parameterize market power, parameterize inverse demand as

4 axl—o =
p(q) = p(q)*p"~*, p = const.

Elasticity of inverse demand is then,

€p(a)| = al£D()|

no market power <— «a =0 <= |Ep(q)] = 0 <= infinitely elastic
demand

26/42



Continuous Market Power

With market power parametrized by o € [0, 1] (firm with market power « has
output §g,), can we generate Monotone Skewness?
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Continuous Market Power

With market power parametrized by o € [0, 1] (firm with market power « has
output §g,), can we generate Monotone Skewness?

Property 3: Monotone Skewness

We say Monotone Skewness holds if the skewness index is decreasing in
market power. That is, skew[g,] < 0 is decreasing in «, with skew[§,] equaling
monopolist and skew[go] = 0 equaling price-taker output, respectively.

The next (and final) property will guarantee Monotone Skewness.
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Pass-Through Rates

The pass-through, 7, is defined as the share of a cost increase that is passed on
to customers in equilibrium.

Formally, 7 equals one plus the elasticity of the mark-up with respect to the cost
shifter ¢ = e*.
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Pass-Through Rates

The pass-through, 7, is defined as the share of a cost increase that is passed on
to customers in equilibrium.

Formally, 7 equals one plus the elasticity of the mark-up with respect to the cost
shifter ¢ = e*.

Property 4: IPT

Let the pass-through be the share of a cost increase that is passed on to
customers in equilibrium given by 7(¢) =1+ ‘é'lz?g. An inverse demand function
p features increasing pass-through (IPT) if 27(¢) > o.

Interpretation IPT: higher-cost firms pass on larger shares of cost increases,

lower cost firms absorb some by dropping mark-ups.
28/42



Relationship of IPT and Monotone Skewness

Result: Sufficient Conditions for Monotone Skewness

Increasing pass-through rates (IPT) and Marshall’s second law of demand
(MSLD) are sufficient conditions to guarantee that skewness of log-output is
negative and decreasing in market power:

IPT A MSLD —> MSLD’ and
IPT A MSLD = Monotone Skewness

29/42



Recap & Outlook

« We thus have a theory which predicts that log-output of larger firms is more
left-skewed than of smaller firms.
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Recap & Outlook

« We thus have a theory which predicts that log-output of larger firms is more
left-skewed than of smaller firms.

- What does it say about skewness of time-series growth rates?
- Does it imply pro-cyclically skewed growth rates?

To this end, we take a look at the role of cross-sectional shock variance, 2.

» Properties in the literature 30/42
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Variance and Skewness

Recall: Left-skew increases in ¢ for s-concave g and symm. Y: %skew[g(qSY)] <o
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Business Cycle and Time Series Growth Rates

- Larger shock variance —- more negative left-skew of §

32/42



Business Cycle and Time Series Growth Rates

- Larger shock variance —- more negative left-skew of §

 Suppose, the shock variance is countercyclical with

orec TOr even t (recessions)
ot —
Ohoo TOr odd t (boom)

with Orec = Oboo-

32/42



Business Cycle and Time Series Growth Rates

- Larger shock variance —- more negative left-skew of §
 Suppose, the shock variance is countercyclical with
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ot —
Ohoo TOr odd t (boom)
with Orec = Oboo-

« Then, for any a € (0, 1], skewness of time-series growth rates is:
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Business Cycle and Time Series Growth Rates

- Larger shock variance —- more negative left-skew of §
 Suppose, the shock variance is countercyclical with
orec TOr even t (recessions)
ot —
Oboo TOr odd t (hoom)
With orec > Thoo-

« Then, for any a € (0, 1], skewness of time-series growth rates is:

~ A skew|[Grecession — Gboom] fOr even t
skew[Ge — Gt-—] = ’ \
skew|[Gboom ~ Grecession) fOr odd t

S

slightly negatively skewed strongly negatively skewed
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Main Result: Market Power and Cyclicality of Growth-Skewness and Dispersion

Parametrize skew[§q.t — Gu.t—1], the skewness of time-series growth rates, by
market power, « € (0,1]. Suppose MSLD, IPT and counter-cyclical dispersion
(. oo ?O—b007 Orec, Uboo, oo ) hOld.
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Main Result: Market Power and Cyclicality of Growth-Skewness and Dispersion
Parametrize skew[§q.t — Gu.t—1], the skewness of time-series growth rates, by
market power, « € (0,1]. Suppose MSLD, IPT and counter-cyclical dispersion
(..., 0boos Orecs Tboo; - - -) hold.

Then, the time-series of growth-rate skewness indexes for G, t — §a.t—1 iS

alternating pro-cyclically: (..., skew[§a. boo — Ga.rec], SkeW[Ga rec — Ga.boo)s - - - )
with

Skew[aa,rec - é\’(Jc,boo] <0< Skew[aa,boo - é\Icz,rec] .

~~

recession expansion

Additionally, the amplitude of the skewness sequence is strictly increasing in
market power:

0 A A
%'Skew[qa,t - QQ,t71” > 0.
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Theory Take-Away

1. Assume that size = market power.
2. Assume that IPT, MSLD holds true.

3. Assume heterogeneous exposures to aggregate shocks
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Theory Take-Away

1. Assume that size = market power.
2. Assume that IPT, MSLD holds true.

3. Assume heterogeneous exposures to aggregate shocks

Then, the model rationalizes all stylized facts.
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Can we use the Theory to Simulate Skewness?

- Theory is clear, but pertains to a stylized environment
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Can we use the Theory to Simulate Skewness?

« Theory is clear, but pertains to a stylized environment

+ Real world is messy: persistent processes, jumps, etc...
« Shock variances do not strictly oscillate!

- But theory delivers a recipe how to simulate the stylized facts:

« Stick in some more realistic process for u; (use an AR(2) with jumps)
+ Let firm exposures to u; be normally distributed = E¢[e;¢] o< ur and Vi[e; o] o< ug
- Use two concave, decreasing mappings to model Q*(-; a), a € {aow, ani}

« Try it! Play with free parameters to roughly match scale of skewness index
and mean over time

35082
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An AR(2) with Pareto jumps for u;

Simulated: Aggregate Shock Path, u;

= Aggregate shock u;
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Concave, decreasing mappings for Q*(-; a), @ € {ajow, api}

Q*(e)

= Firm Policy

Policy w/ higher market power
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Kelly Skewness

Simulated co-movement between ; and ~;

Simulated: Procyclical Skewness, y; (high market power firm)
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Kelly Skewness

Simulated co-movement between +; and Ac? — for each !

Simulated: Kelly Skewness by Market Power and Changes in Variance
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Kelly Skewness

Simulated co-movement between +; and Ac? — for each !

Simulated: Kelly Skewness by Market Power and Changes in Variance
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Empirics



The theoretical model implies following empirical hypotheses:

Ho: Cross-sectional changes in output variance are a strong predictor of cross-
sectional skewness, and more so for large firms. Skewness is pro-cyclical, and
especially for large firms. Variance is counter-cyclical.

These are the stylized facts.
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The theoretical model implies following empirical hypotheses:

H1: Aggregate shocks (u; # 0) cause aggregate dip in skewness of growth
rates. The dip is more pronounced for largest firms.

We confirm this by estimating impulse-response functions to a battery of
off-the-shelf shocks.
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The theoretical model implies following empirical hypotheses:

H2: In a decomposition of growth rates into aggregate and idiosyncratic
shocks, skewness of aggregate shock explains skewness of growth rates well.

In a PCA, an aggregate component explains about 75% of skewness in sales
growth.
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H3: Split firms in high-(absolute-)exposure and low-exposure samples. Skew-
ness of high-exposure firms reacts more strongly than that of low-exposure
firms in response to an exogenous aggregate shock.

We confirm this using risk factors and exposures to COVID shocks from Davis
et al. (2025).
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Hg: Slice the firm sample by industry (not size). Then there is a strong positive
relationship between the time-series variance of the skewness index and the
average HHI of the industry.

Examine and confirm using NAICS classifications.
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Hs: The stylized facts hold in a disjoint sample of listed European firms.

We reproduce cyclicality and size related stylized facts in Compustat Global.
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Conclusion



- Theoretical insight: aggregate shocks are all you need! Can generate
cross-sectional moments of heterogeneous growth:
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« Patterns are in line with market power explanation
« Cross-sectional left-skewness can be created by aggregate ‘disaster’ shocks
« But different skewness in two cross-sections =~ two different aggregate
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Theoretical insight: aggregate shocks are all you need! Can generate
cross-sectional moments of heterogeneous growth:

- aggregate shock + heterogeneous exposures = countercyclical variance

« countercyclical variance + market power = procyclical, monotone skewness
Empirical insight: new pattern of business cycle statistics (monotone
skewness)

« Patterns are in line with market power explanation

« Cross-sectional left-skewness can be created by aggregate ‘disaster’ shocks

« But different skewness in two cross-sections =~ two different aggregate

shocks or even different exposures!

Skewness of realized growth distributions can be driven by shock exposure
or market power

Also: concave policy of monopolist implies disproportionate reactions to
negative shocks (be careful when using growth as a metric to hand out
subsidies during crises!)
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Thank you!
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Appendix



Appendix: Theory



What does “more concave” mean?

Formal definition due to Palmer (2003):

Definition: Relative Concavity

Consider two strictly monotone functions f and g. f is concave relative to g if
there exists a strictly increasing, strictly concave function s such thatf =sog.
We write f < g.

» Go to concavity-figure 42/42
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Lemma: Skewness of Transformed RVs

Let Y be a random variable, continuously and symmetrically distributed with
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Skewness of Transformed Random Variables

What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs

Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < oc. Let ¢ > 0 be constant, and g(-) be a concave and increasing function
over the support of Y (resp. ¢Y). Then:

1. It holds that skew[g(Y)] < 0, and strictly if g is strictly concave.

skewed § <= concave Q*
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Skewness of Transformed Random Variables

What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs

Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < oc. Let ¢ > 0 be constant, and g(-) be a concave and increasing function
over the support of Y (resp. ¢Y). Then:

1. It holds that skew[g(Y)] < 0, and strictly if g is strictly concave.
2. If his concave relative to g, i.e. h < g, then skew[h(Y)] < skew[g(Y)].
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Skewness of Transformed Random Variables

What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs

Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < oc. Let ¢ > 0 be constant, and g(-) be a concave and increasing function
over the support of Y (resp. ¢Y). Then:

1. It holds that skew[g(Y)] < 0, and strictly if g is strictly concave.
2. If h is concave relative to g, i.e. h < g, then skew[h(Y)] < skew[g(Y)]-

l

more left-skew <= more concave Q* <= more market power
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Skewness of Transformed Random Variables

What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs

Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < oc. Let ¢ > 0 be constant, and g(-) be a concave and increasing function
over the support of Y (resp. ¢Y). Then:

1. It holds that skew[g(Y)] < 0, and strictly if g is strictly concave.
2. If his concave relative to g, i.e. h < g, then skew[h(Y)] < skew[g(Y)].
3. Skewness decreases for larger ¢:

o
%skew[g(W)] <o,

which also holds strictly if g is strictly concave.
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Skewness of Transformed Random Variables

What do relative concavity and RV-variance imply for skewness?

Lemma: Skewness of Transformed RVs

Let Y be a random variable, continuously and symmetrically distributed with
E[Y] < oc. Let ¢ > 0 be constant, and g(-) be a concave and increasing function
over the support of Y (resp. ¢Y). Then:

1. It holds that skew[g(Y)] < 0, and strictly if g is strictly concave.
2. If his concave relative to g, i.e. h < g, then skew[h(Y)] < skew[g(Y)].
3. Skewness decreases for larger ¢:

0
a—qﬁskew[g(@Y)] <o0.

which also holds strictly if g is strictlyiconcave.

variance affects skewness! (later) 12/42



Theor. Properties vs. Empirical Literature

« MSLD is prevalent e.g. in trade literature (Krugman (1979)), popular
aggregators satisfy MSLD (Kimball, 1995) (CES does not!), recent attention in
e.g. Matsuyama and Ushchev (2022)

« There is empirical support for MSLD and IPT (Berman et al., 2012; Bagaee
et al., 2024; Amiti et al., 2019)

« There is also strong empirical support that larger firms have more market
power (De Loecker and Warzynski, 2012; Autor et al., 2020)

- Evidence that input shock variance is countercyclical: Bloom (2009); Davis
et al. (2025) plus previously cited.

» Back to theory recap 42 /42



Appendix: Stylized Facts



Robustness: Skewness measures
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Robustness: Procyclical skewness for increasing size cutoffs

Vp = Qp + Bpht + €t (1)
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Stylized Facts Compustat (Compustat Global)

Kelley Skewness
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0.0

-0.2

Figure 4: Size-dependent skewness (ex. US)

(a) Skewness over time

(b) Skewness—growth regression
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Note: Size groups are defined based on average real sales over previous three years. The sample
is Compustat Global which excludes US-listed firms.

» Back to s-facts J » Back to hypotheses

42[42



Stylized Facts Compustat (Paper Figure)

Figure 5: Size-dependent skewness (U.S. only)

(a) Skewness over time (b) Skewness—growth regression
061 Large firms (Top 10%) 4.0 [ = Slope (skew ~ aggregate)
Small firms (Bottom 90%) 95% CI
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Note: Size groups are defined based on average real sales over previous three years. The standard
deviation of Kelley skewness for large firms is about 0.23 — more than twice the corresponding

alue ol O or small Jrms.
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Appendix: Data Description



Compustat Data

Dataset Overview:

- Compustat: US public firms, quarterly frequency, over 35 years.

« All firms are large by global standards (avg. assets of USD 2.8bn)

* Key variable: Real sales s;; growth defined as g;; = In(s; ;) — In(S; ;)
- Aggregate sales growth (size-weighted):

ge = > i 9itSit—s
> iSits
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Compustat Data

Dataset Overview:

- Compustat: US public firms, quarterly frequency, over 35 years.

« All firms are large by global standards (avg. assets of USD 2.8bn)

* Key variable: Real sales s;; growth defined as g;; = In(s; ;) — In(S; ;)
- Aggregate sales growth (size-weighted):

g = > i 9itSit—s
> iSit—s

Firm Size Characteristics:

« Firms in Compustat sample are large relative to the universe of US firms.
« Largest 10% of firms account for approximately 70% of total sales.
« Top 30% of firms represent over 90% of total sales.

» Go to IRFs » Go to PCA
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Appendix: Impulse Response Functions (H1)



Impulse Response Findings

Aggregate shocks studied:

« Monetary, oil supply, credit, uncertainty, sentiment, TFP shocks.
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Impulse Response Findings

Aggregate shocks studied:
« Monetary, oil supply, credit, uncertainty, sentiment, TFP shocks.
Key results:

» All shocks induce significant declines in skewness (0.02-0.06 points).
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Impulse Response Findings

Aggregate shocks studied:
« Monetary, oil supply, credit, uncertainty, sentiment, TFP shocks.
Key results:

» All shocks induce significant declines in skewness (0.02-0.06 points).

- Strong correlation between impulse responses of skewness and aggregate
sales growth (0.89-0.98).
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Impulse Response Findings

Aggregate shocks studied:

« Monetary, oil supply, credit, uncertainty, sentiment, TFP shocks.

Key results:

» All shocks induce significant declines in skewness (0.02-0.06 points).

- Strong correlation between impulse responses of skewness and aggregate
sales growth (0.89-0.98).

« Large firms exhibit more pronounced skewness response than smaller firms.

w2l



+ Takeaway: Co-movement of u: and ~; holds for structural shocks

Kelley Skewness (x 100)
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Skewness and average sales growth response

« Five out of six shocks induce negative skewness, all induce co-movement
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Skewness IRFs according to size groups

« Five out of six shocks induce more skewness for large firms
- Takeaway: Likely that skewness response a result from skewed responses of
large firms

Monetary Oil Credit
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Uncertainty

(x100) Kelley Skewness (x100)

Kelley Skewness

Horizon (quarters) Horizon (quarters) Horizon (quarters)

» Back to hypotheses == Small firms

Large firms
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Appendix: Sales Growth Decomposition and Skewness (H2)



Aggregate vs. Idiosyncratic Components

Decomposition approach via PCA:
it = 0i +Qjs +Uip, Qe = BiFe,  gix = AlogQy,
where 3; are estimated factor loadings and F; is an aggregate factor.

Results:

- Aggregate component (a; ;) strongly correlated with skewness in sales
growth.

+ Aggregate component explains 75% of skewness variation; idiosyncratic
component (§;) is less significant (25%).

w2l



Factor Decomposition Results

Key observations from PCA:

« Single aggregate factor accounts for 79% skewness variation.

- Aggregate factors explain relatively little ( 30%) of individual firm-level
variation.

« Thus, skewness is driven by heterogeneous firm-level responses to common
shocks rather than purely idiosyncratic variation.

42[42



Decomposition of Skewness

« Skewness in the idiosyncratic component adds little beyond the procyclical

pattern in the common component.
+ The sum of common and idiosyncratic contributions (green) closely matches

the overall skewness measure (blue)
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Appendix: Risk Factors (H3)



COVID risk exposures and skewness Davis et al. (2025)

- Risk exposures ); to COVID shock be Davis et al. (2025)
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COVID risk exposures and skewness Davis et al. (2025)

- Risk exposures ); to COVID shock be Davis et al. (2025)
+ Split sample: i € H if |\;| is above median absolute exposure, |\j|o 5.
Otherwise, i € £
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COVID risk exposures and skewness Davis et al. (2025)

- Risk exposures ); to COVID shock be Davis et al. (2025)
+ Split sample: i € H if |\;| is above median absolute exposure, |\j|o 5.

Otherwise, i € £
« Prediction: growth rate skewness of v(#) < ~v:(£) on impact, :(H) > V(L)
during recovery.
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COVID risk exposures and skewness Davis et al. (2025)

- Risk exposures ); to COVID shock be Davis et al. (2025)

+ Split sample: i € H if |\;| is above median absolute exposure, |\j|o 5.
Otherwise, i € £

« Prediction: growth rate skewness of v(#) < ~v:(£) on impact, :(H) > V(L)
during recovery.
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Appendix: Concentration drives Skewness (Hz)



Skewness and Concentration

« If market power is the driving force, then skewness within sectors with large
HHI should have larger amplitude, hence time-series variance

- Strongest correlation between amplitude of skewness fluctuations and HHI
concentration for coarsest sectors
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Skewness and Concentration

« If market power is the driving force, then skewness within sectors with large
HHI should have larger amplitude, hence time-series variance

- Strongest correlation between amplitude of skewness fluctuations and HHI
concentration for coarsest sectors

- Constraining firms to be more equal (finer sectors) mutes relationship
(explanation: smaller cross-sections and measurement error)
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